Suppr超能文献

耳朵的感觉毛细胞的关键之处。

The Critical Thing about the Ear's Sensory Hair Cells.

机构信息

Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065

Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065.

出版信息

J Neurosci. 2024 Oct 30;44(44):e1583242024. doi: 10.1523/JNEUROSCI.1583-24.2024.

Abstract

The capabilities of the human ear are remarkable. We can normally detect acoustic stimuli down to a threshold sound-pressure level of 0 dB (decibels) at the entrance to the external ear, which elicits eardrum vibrations in the picometer range. From this threshold up to the onset of pain, 120 dB, our ears can encompass sounds that differ in power by a trillionfold. The comprehension of speech and enjoyment of music result from our ability to distinguish between tones that differ in frequency by only 0.2%. All these capabilities vanish upon damage to the ear's receptors, the mechanoreceptive sensory hair cells. Each cochlea, the auditory organ of the inner ear, contains some 16,000 such cells that are frequency-tuned between ∼20 Hz (cycles per second) and 20,000 Hz. Remarkably enough, hair cells do not simply capture sound energy: they can also exhibit an active process whereby sound signals are amplified, tuned, and scaled. This article describes the active process in detail and offers evidence that its striking features emerge from the operation of hair cells on the brink of an oscillatory instability-one example of the critical phenomena that are widespread in physics.

摘要

人类耳朵的能力非常出色。通常情况下,我们可以在外部耳朵入口处检测到低至 0 分贝(dB)的声压级阈值的声刺激,这会引起鼓膜振动,其幅度在皮米范围内。从这个阈值到疼痛开始的 120dB,我们的耳朵可以涵盖功率相差万亿倍的声音。我们能够区分频率仅相差 0.2%的音调,这使得我们能够理解言语和享受音乐。所有这些能力都在耳朵的感受器(机械感受器感觉毛细胞)受损时消失。内耳的听觉器官每个耳蜗大约包含 16000 个这样的细胞,它们的频率调谐在 20 Hz(每秒周期)到 20000 Hz 之间。值得注意的是,毛细胞不仅仅是捕捉声音能量:它们还可以表现出一种主动过程,通过这种过程,声音信号被放大、调谐和缩放。本文详细描述了这个主动过程,并提供了证据表明,其显著特征源自于毛细胞在振荡不稳定性边缘的运作——这是物理学中广泛存在的临界现象的一个例子。

相似文献

1
The Critical Thing about the Ear's Sensory Hair Cells.
J Neurosci. 2024 Oct 30;44(44):e1583242024. doi: 10.1523/JNEUROSCI.1583-24.2024.
2
The physics of hearing: fluid mechanics and the active process of the inner ear.
Rep Prog Phys. 2014 Jul;77(7):076601. doi: 10.1088/0034-4885/77/7/076601. Epub 2014 Jul 9.
3
Phantom tones and suppressive masking by active nonlinear oscillation of the hair-cell bundle.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1344-51. doi: 10.1073/pnas.1202426109. Epub 2012 May 3.
4
Integrating the active process of hair cells with cochlear function.
Nat Rev Neurosci. 2014 Sep;15(9):600-14. doi: 10.1038/nrn3786. Epub 2014 Aug 6.
5
Rapid mechanical stimulation of inner-ear hair cells by photonic pressure.
Elife. 2021 Jul 6;10:e65930. doi: 10.7554/eLife.65930.
6
Mechanotransduction in mammalian sensory hair cells.
Mol Cell Neurosci. 2022 May;120:103706. doi: 10.1016/j.mcn.2022.103706. Epub 2022 Feb 23.
7
The physical basis of active mechanosensitivity by the hair-cell bundle.
Curr Opin Otolaryngol Head Neck Surg. 2011 Oct;19(5):369-75. doi: 10.1097/MOO.0b013e32834a8c33.
8
How the ear's works work.
Nature. 1989 Oct 5;341(6241):397-404. doi: 10.1038/341397a0.
9
Fast adaptation of cooperative channels engenders Hopf bifurcations in auditory hair cells.
Biophys J. 2022 Mar 15;121(6):897-909. doi: 10.1016/j.bpj.2022.02.016. Epub 2022 Feb 15.
10
The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
J Physiol. 1980 Sep;306:79-125. doi: 10.1113/jphysiol.1980.sp013387.

引用本文的文献

1
Amplification through local critical behavior in the mammalian cochlea.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2503389122. doi: 10.1073/pnas.2503389122. Epub 2025 Jul 14.
2
Musical Hallucinosis: Auditory Illusions After Hearing Loss and Cochlear Implantation.
Neurorehabil Neural Repair. 2025 Aug;39(8):677-681. doi: 10.1177/15459683251348171. Epub 2025 Jun 19.

本文引用的文献

1
A bifurcation integrates information from many noisy ion channels and allows for milli-Kelvin thermal sensitivity in the snake pit organ.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2308215121. doi: 10.1073/pnas.2308215121. Epub 2024 Jan 31.
2
Sensing sound: Cellular specializations and molecular force sensors.
Neuron. 2022 Nov 16;110(22):3667-3687. doi: 10.1016/j.neuron.2022.09.018. Epub 2022 Oct 11.
3
Universal minimal cost of coherent biochemical oscillations.
Phys Rev E. 2022 Jul;106(1-1):014106. doi: 10.1103/PhysRevE.106.014106.
4
Modeling Active Non-Markovian Oscillations.
Phys Rev Lett. 2022 Jul 15;129(3):030603. doi: 10.1103/PhysRevLett.129.030603.
6
Rectifying and sluggish: Outer hair cells as regulators rather than amplifiers.
Hear Res. 2022 Sep 15;423:108367. doi: 10.1016/j.heares.2021.108367. Epub 2021 Oct 2.
7
Effects of Efferent Activity on Hair Bundle Mechanics.
J Neurosci. 2020 Mar 18;40(12):2390-2402. doi: 10.1523/JNEUROSCI.1312-19.2020. Epub 2020 Feb 21.
8
TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells.
Neuron. 2018 Aug 22;99(4):736-753.e6. doi: 10.1016/j.neuron.2018.07.033.
9
Friction from Transduction Channels' Gating Affects Spontaneous Hair-Bundle Oscillations.
Biophys J. 2018 Jan 23;114(2):425-436. doi: 10.1016/j.bpj.2017.11.019.
10
Characterizing spontaneous otoacoustic emissions across the human lifespan.
J Acoust Soc Am. 2017 Mar;141(3):1874. doi: 10.1121/1.4977192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验