Schwab Y, Mouton J, Chasserot-Golaz S, Marty I, Maulet Y, Jover E
UMR-CNRS 7519, Laboratoire de Neurophysiologie Cellulaire et Intégrée, Université Louis Pasteur, 21, rue René Descartes, F-67084, Cedex, Strasbourg, France.
Brain Res Mol Brain Res. 2001 Nov 30;96(1-2):1-13. doi: 10.1016/s0169-328x(01)00244-3.
In neurones, the morphological complexity of the dendritic tree requires regulated growth and the appropriate targeting of membrane components. Accurate delivery of specific supplies depends on the translocation and fusion of transport vesicles. Vesicle SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) and target membrane SNAREs play a central role in the correct execution of fusion events, and mediate interactions with molecules that endow the system with appropriate regulation. Synaptotagmins, a family of Ca(2+)-sensor proteins that includes neurone-specific members involved in regulating neurotransmitter exocytosis, are among the molecules that can tune the fusion mechanism. Using immunocytochemistry, confocal and electron microscopy, the localisation of synaptotagmin I in the dendrites of cultured rat hypothalamic neurones was demonstrated. Synaptotagmin labelling is concentrated at dendritic branch points, and in microprocesses. Following depolarisation, the N-terminal domain of synaptotagmin was detected at the extracellular surface of the dendritic plasma membrane. The insertion of synaptotagmin in the plasma membrane was elicited by L-type Ca(2+) channel activation and by mobilisation of the internal ryanodine-sensitive Ca(2+)stores. Furthermore, the localisation of L-type Ca(2+) channels and of ryanodine receptors, relative to the localisation of synaptotagmin in dendrites, suggests that both Ca(2+) entry and intracellular Ca(2+) stores may contribute to the fusion of dendritic transport vesicles with the membrane. Fusion is likely to involve SNAP-25 and syntaxin 1 as both proteins were also identified in dendrites. Taken together these results suggest a putative regulatory role of synaptotagmins in the membrane fusion events that contribute to shaping the dendritic tree during development.
在神经元中,树突状树突的形态复杂性需要有规律的生长以及膜成分的适当靶向。特定物质的准确输送取决于运输小泡的转运和融合。小泡SNAREs(可溶性N - 乙基马来酰亚胺敏感因子附着蛋白受体)和靶膜SNAREs在融合事件的正确执行中起核心作用,并介导与赋予系统适当调节功能的分子的相互作用。突触结合蛋白是一类Ca(2+)传感蛋白家族,其中包括参与调节神经递质胞吐作用的神经元特异性成员,是能够调节融合机制的分子之一。利用免疫细胞化学、共聚焦显微镜和电子显微镜,证实了突触结合蛋白I在培养的大鼠下丘脑神经元树突中的定位。突触结合蛋白标记集中在树突分支点和微突起处。去极化后,在树突质膜的细胞外表面检测到突触结合蛋白的N末端结构域。L型Ca(2+)通道激活和内部兰尼碱敏感Ca(2+)储存的动员引发了突触结合蛋白插入质膜。此外,相对于树突中突触结合蛋白的定位,L型Ca(2+)通道和兰尼碱受体的定位表明,Ca(2+)内流和细胞内Ca(2+)储存都可能有助于树突运输小泡与膜的融合。融合可能涉及SNAP - 25和 syntaxin 1,因为在树突中也鉴定出了这两种蛋白质。综合这些结果表明,突触结合蛋白在膜融合事件中可能具有调节作用,这有助于在发育过程中塑造树突状树突。