Suppr超能文献

双引物引发:一种关于L1逆转录转座中倒置产生的推测机制。

Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition.

作者信息

Ostertag E M, Kazazian H H

机构信息

Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

Genome Res. 2001 Dec;11(12):2059-65. doi: 10.1101/gr.205701.

Abstract

L1 retrotransposons are pervasive in the human genome. Approximately 25% of recent L1 insertions in the genome are inverted and truncated at the 5' end of the element, but the mechanism of L1 inversion has been a complete mystery. We analyzed recent L1 inversions from the genomic database and discovered several findings that suggested a mechanism for the creation of L1 inversions, which we call twin priming. Twin priming is a consequence of target primed reverse transcription (TPRT), a coupled reverse transcription/integration reaction that L1 elements are thought to use during their retrotransposition. In TPRT, the L1 endonuclease cleaves DNA at its target site to produce a double-strand break with two single-strand overhangs. During twin priming, one of the overhangs anneals to the poly(A) tail of the L1 RNA, and the other overhang anneals internally on the RNA. The overhangs then serve as primers for reverse transcription. The data further indicate that a process identical to microhomology-driven single-strand annealing resolves L1 inversion intermediates.

摘要

L1逆转录转座子在人类基因组中广泛存在。基因组中最近的L1插入约25%在元件的5'端发生了反向和截短,但L1反向的机制一直完全是个谜。我们分析了基因组数据库中最近的L1反向事件,发现了几个结果,这些结果提示了一种产生L1反向的机制,我们称之为双引物引发。双引物引发是靶标引发的逆转录(TPRT)的结果,TPRT是一种逆转录/整合偶联反应,L1元件在其逆转录转座过程中被认为会使用该反应。在TPRT中,L1内切酶在其靶位点切割DNA,产生一个带有两个单链突出端的双链断裂。在双引物引发过程中,其中一个突出端与L1 RNA的聚腺苷酸尾退火,另一个突出端在RNA内部退火。然后这些突出端作为逆转录的引物。数据进一步表明,一个与微同源性驱动的单链退火相同的过程解决了L1反向中间体问题。

相似文献

1
2
Alu retrotransposition-mediated deletion.
J Mol Biol. 2005 May 13;348(4):791-800. doi: 10.1016/j.jmb.2005.02.043.
3
An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair.
Genomics. 2009 Mar;93(3):205-12. doi: 10.1016/j.ygeno.2008.09.016. Epub 2008 Nov 11.
4
A novel insertion of a rearranged L1 element in exon 44 of the dystrophin gene: further evidence for possible bias in retroposon integration.
Biochem Biophys Res Commun. 2006 Aug 18;347(1):145-9. doi: 10.1016/j.bbrc.2006.06.071. Epub 2006 Jun 21.
5
L1 integration in a transgenic mouse model.
Genome Res. 2006 Feb;16(2):240-50. doi: 10.1101/gr.4571606. Epub 2005 Dec 19.
6
The structures of mouse and human L1 elements reflect their insertion mechanism.
Cytogenet Genome Res. 2005;110(1-4):223-8. doi: 10.1159/000084956.
9
mRNA retrotransposition coupled with 5' inversion as a possible source of new genes.
Mol Biol Evol. 2009 Jun;26(6):1405-20. doi: 10.1093/molbev/msp050. Epub 2009 Mar 16.
10

引用本文的文献

1
Structural variation in 1,019 diverse humans based on long-read sequencing.
Nature. 2025 Jul 23. doi: 10.1038/s41586-025-09290-7.
2
Coexistence vs collapse in transposon populations.
ArXiv. 2025 May 19:arXiv:2411.11010v2.
3
Structural features of somatic and germline retrotransposition events in humans.
Mob DNA. 2025 Apr 22;16(1):20. doi: 10.1186/s13100-025-00357-w.
4
Structural mechanism of LINE-1 target-primed reverse transcription.
Science. 2025 Apr 25;388(6745):eads8412. doi: 10.1126/science.ads8412.
6
Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs.
bioRxiv. 2025 Feb 3:2025.02.02.635956. doi: 10.1101/2025.02.02.635956.
7
Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon.
bioRxiv. 2024 Dec 17:2024.12.14.628481. doi: 10.1101/2024.12.14.628481.
8
Regulatory logic and transposable element dynamics in nematode worm genomes.
bioRxiv. 2024 Sep 16:2024.09.15.613132. doi: 10.1101/2024.09.15.613132.
9
Impact of prematurity on LINE-1 promoter methylation.
Epigenomics. 2024;16(18):1253-1264. doi: 10.1080/17501911.2024.2397329. Epub 2024 Sep 19.
10
Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci.
Nat Biotechnol. 2025 Jan;43(1):42-51. doi: 10.1038/s41587-024-02137-y. Epub 2024 Feb 20.

本文引用的文献

1
Selection against deleterious LINE-1-containing loci in the human lineage.
Mol Biol Evol. 2001 Jun;18(6):926-35. doi: 10.1093/oxfordjournals.molbev.a003893.
2
Initial sequencing and analysis of the human genome.
Nature. 2001 Feb 15;409(6822):860-921. doi: 10.1038/35057062.
3
Human L1 retrotransposition: cis preference versus trans complementation.
Mol Cell Biol. 2001 Feb;21(4):1429-39. doi: 10.1128/MCB.21.4.1429-1439.2001.
6
Transduction of 3'-flanking sequences is common in L1 retrotransposition.
Hum Mol Genet. 2000 Mar 1;9(4):653-7. doi: 10.1093/hmg/9.4.653.
8
GenBank.
Nucleic Acids Res. 2000 Jan 1;28(1):15-8. doi: 10.1093/nar/28.1.15.
9
Fidelity of retrotransposon replication.
Ann N Y Acad Sci. 1999 May 18;870:108-18. doi: 10.1111/j.1749-6632.1999.tb08871.x.
10
The age and evolution of non-LTR retrotransposable elements.
Mol Biol Evol. 1999 Jun;16(6):793-805. doi: 10.1093/oxfordjournals.molbev.a026164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验