Suppr超能文献

在猴子中,产生纹状皮层和纹外皮层的神经上皮增殖区和有丝分裂后区的独特形态特征。

Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey.

作者信息

Smart Iain H M, Dehay Colette, Giroud Pascale, Berland Michel, Kennedy Henry

机构信息

Cerveau et Vision, Unité 371 INSERM, 18 Avenue Doyen Lépine, 69675 Bron Cedex, France.

出版信息

Cereb Cortex. 2002 Jan;12(1):37-53. doi: 10.1093/cercor/12.1.37.

Abstract

We examined the development of the occipital lobe in fetal monkeys between embryonic day 37 (E37) and E108 in Nissl-stained and acetylcholine esterase (AChE)-reacted sections. We paid particular attention to features that distinguish the development of presumptive area 17. At E46 the neuroepithelium consists of a ventricular zone and a monolayer cortical plate sandwiched between a thin marginal zone and a minimal presubplate. Between E55 and E65 an augmented subplate emerges and continues to expand up to E94 to become a major compartment of the developing cortex. A mitotic subventricular zone is established by E55. Peaking in depth at E72, it constitutes the principal germinal zone. By E78 an invading fibre tract divides it into an outer radially organized zone and a more conventional inner zone. AChE staining reveals the future area 17/18 border from E86 onwards. Proceeding from presumptive area 17 to area 18 there is a progressive thinning of the radially structured subventricular zone. Comparison of these results with corticogenesis in rodents suggests a number of potentially unique primate features: (i) a minimal preplate stage; (ii) a radially augmented germinal zone not previously described in non-primates; (iii) a fibre tract dividing the subventricular zone into two laminae; (iv) late generation and expansion of the subplate.

摘要

我们在尼氏染色和乙酰胆碱酯酶(AChE)反应切片中研究了胚胎期第37天(E37)至E108天的胎猴枕叶发育情况。我们特别关注了区分推定的17区发育的特征。在E46时,神经上皮由一个脑室区和夹在薄边缘区与最小的前板下区之间的单层皮质板组成。在E55至E65之间,一个扩大的前板下区出现,并持续扩展至E94,成为发育中皮质的一个主要部分。有丝分裂的脑室下区在E55时形成。它在E72时深度达到峰值,构成主要的生发区。到E78时,一条侵入的纤维束将其分为一个外侧呈放射状组织的区域和一个更传统的内侧区域。AChE染色从E86起显示出未来的17/18区边界。从推定的17区到18区,呈放射状结构的脑室下区逐渐变薄。将这些结果与啮齿动物的皮质发生过程进行比较,发现了一些灵长类动物可能独有的特征:(i)前板阶段最小;(ii)非灵长类动物中未曾描述过的放射状扩大的生发区;(iii)一条将脑室下区分成两层的纤维束;(iv)前板下区的晚期生成和扩展。

相似文献

3
5
Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones.
J Neurosci. 1985 Apr;5(4):1062-75. doi: 10.1523/JNEUROSCI.05-04-01062.1985.
7
Cellular composition of the telencephalic wall in human embryos.
Early Hum Dev. 1993 Mar;32(2-3):131-49. doi: 10.1016/0378-3782(93)90007-h.
8
Time of origin and early fate of preplate cells in the cerebral cortex of the rat.
Cereb Cortex. 1995 Nov-Dec;5(6):483-93. doi: 10.1093/cercor/5.6.483.

引用本文的文献

1
Dissection of Neurochemical Pathways Across Complexity and Scale.
J Neurochem. 2025 Jul;169(7):e70160. doi: 10.1111/jnc.70160.
2
Multi-task machine learning reveals the functional neuroanatomy fingerprint of mental processing.
bioRxiv. 2025 Jul 5:2023.11.30.569385. doi: 10.1101/2023.11.30.569385.
5
A dyad of human-specific and orchestrates cortical progenitor abundance crucial for human neocortex expansion.
Sci Adv. 2025 Mar 28;11(13):eads7543. doi: 10.1126/sciadv.ads7543. Epub 2025 Mar 26.
6
Quantitative in toto live imaging analysis of apical nuclear migration in the mouse telencephalic neuroepithelium.
Dev Growth Differ. 2024 Dec;66(9):462-474. doi: 10.1111/dgd.12949. Epub 2024 Nov 26.
7
Deciphering the physiopathology of neurodevelopmental disorders using brain organoids.
Brain. 2025 Jan 7;148(1):12-26. doi: 10.1093/brain/awae281.
8
Epigenomic landscapes during prefrontal cortex development and aging in rhesus.
Natl Sci Rev. 2024 Jun 18;11(8):nwae213. doi: 10.1093/nsr/nwae213. eCollection 2024 Aug.
9
The Principle of Cortical Development and Evolution.
Neurosci Bull. 2025 Mar;41(3):461-485. doi: 10.1007/s12264-024-01259-2. Epub 2024 Jul 18.
10
Auts2 enhances neurogenesis and promotes expansion of the cerebral cortex.
J Adv Res. 2025 Jun;72:151-163. doi: 10.1016/j.jare.2024.07.012. Epub 2024 Jul 14.

本文引用的文献

1
Simultaneous demonstration of horseradish peroxidase and acetylcholinesterase.
Neurosci Lett. 1976 Sep;3(1-2):1-5. doi: 10.1016/0304-3940(76)90090-2.
3
Neurons derived from radial glial cells establish radial units in neocortex.
Nature. 2001 Feb 8;409(6821):714-20. doi: 10.1038/35055553.
4
Distinct cortical migrations from the medial and lateral ganglionic eminences.
Development. 2001 Feb;128(3):353-63. doi: 10.1242/dev.128.3.353.
5
Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons.
J Neurosci. 2001 Jan 1;21(1):201-14. doi: 10.1523/JNEUROSCI.21-01-00201.2001.
6
Characterization of CNS precursor subtypes and radial glia.
Dev Biol. 2001 Jan 1;229(1):15-30. doi: 10.1006/dbio.2000.9962.
7
Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage.
Development. 2000 Dec;127(24):5253-63. doi: 10.1242/dev.127.24.5253.
9
Regulation of area identity in the mammalian neocortex by Emx2 and Pax6.
Science. 2000 Apr 14;288(5464):344-9. doi: 10.1126/science.288.5464.344.
10
Embryonic and early fetal development of the human neocortex.
J Neurosci. 2000 Mar 1;20(5):1858-68. doi: 10.1523/JNEUROSCI.20-05-01858.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验