Abbondanza Alice, Kim Nawon, Lima-Filho Ricardo A S, Amin Azin, Anversa Roberta G, Almeida Felipe Borges, Cardozo Pablo L, Carello-Collar Giovanna, Carsana Emma V, Folarin Royhaan O, Guerreiro Sara, Ijomone Olayemi K, Lawal Sodiq K, Matias Isadora, Mbagwu Smart I, Niño Sandra A, Olabiyi Bolanle F, Olatunji Sunday Y, Olasehinde Tosin A, Ruankham Waralee, Sanchez William N, Soares-Cunha Carina, Soto Paula A, Soto-Verdugo Jazmín, Strogulski Nathan R, Tomaszewska Weronika, Vieira Cármen, Chaves-Filho Adriano, Cousin Michael A, Rinken Ago, Wenzel Tyler J
Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
CNRS, Inserm, Institut de Biologie Paris Seine (IBPS), Centre de Neuroscience Sorbonne Université (NeuroSU), Sorbonne Université, Paris, France.
J Neurochem. 2025 Jul;169(7):e70160. doi: 10.1111/jnc.70160.
The field of Neurochemistry spent decades trying to understand how the brain works, from nano to macroscale and across diverse species. Technological advancements over the years allowed researchers to better visualize and understand the cellular processes underpinning central nervous system (CNS) function. This review provides an overview of how novel models, and tools have allowed Neurochemistry researchers to investigate new and exciting research questions. We discuss the merits and demerits of different in vivo models (e.g., Caenorhabditis elegans, Drosophila melanogaster, Ratus norvegicus, and Mus musculus) as well as in vitro models (e.g., primary cells, induced pluripotent stem cells, and immortalized cells) to study Neurochemical events. We also discuss how these models can be paired with cutting-edge genetic manipulation (e.g., CRISPR-Cas9 and engineered viral vectors) and imaging techniques, such as super-resolution microscopy and new biosensors, to study cellular processes of the CNS. These technological advancements provide new insight into Neurochemical events in physiological and pathological contexts, paving the way for the development of new treatments (e.g., cell and gene therapies or small molecules) that aim to treat neurological disorders by reverting the CNS to its homeostatic state.
神经化学领域花费了数十年时间试图理解大脑的工作方式,从纳米尺度到宏观尺度,涵盖了各种不同的物种。多年来的技术进步使研究人员能够更好地可视化和理解支撑中枢神经系统(CNS)功能的细胞过程。本综述概述了新型模型和工具如何使神经化学研究人员能够探究新的、令人兴奋的研究问题。我们讨论了不同体内模型(如秀丽隐杆线虫、黑腹果蝇、褐家鼠和小家鼠)以及体外模型(如原代细胞、诱导多能干细胞和永生化细胞)在研究神经化学事件方面的优缺点。我们还讨论了这些模型如何与前沿的基因操作(如CRISPR-Cas9和工程化病毒载体)以及成像技术(如超分辨率显微镜和新型生物传感器)相结合,以研究中枢神经系统的细胞过程。这些技术进步为生理和病理背景下的神经化学事件提供了新的见解,为旨在通过使中枢神经系统恢复到稳态来治疗神经疾病的新疗法(如细胞和基因疗法或小分子)的开发铺平了道路。