Dionne Olivier, Sabatié Salomé, Laurent Benoit
Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 4C4, Canada.
Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5H4, Canada.
Brain. 2025 Jan 7;148(1):12-26. doi: 10.1093/brain/awae281.
Neurodevelopmental disorders (NDD) encompass a range of conditions marked by abnormal brain development in conjunction with impaired cognitive, emotional and behavioural functions. Transgenic animal models, mainly rodents, traditionally served as key tools for deciphering the molecular mechanisms driving NDD physiopathology and significantly contributed to the development of pharmacological interventions aimed at treating these disorders. However, the efficacy of these treatments in humans has proven to be limited, due in part to the intrinsic constraint of animal models to recapitulate the complex development and structure of the human brain but also to the phenotypic heterogeneity found between affected individuals. Significant advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising avenue for overcoming these challenges. Indeed, the development of advanced differentiation protocols for generating iPSC-derived brain organoids gives an unprecedented opportunity to explore human neurodevelopment. This review provides an overview of how 3D brain organoids have been used to investigate various NDD (i.e. Fragile X syndrome, Rett syndrome, Angelman syndrome, microlissencephaly, Prader-Willi syndrome, Timothy syndrome, tuberous sclerosis syndrome) and elucidate their pathophysiology. We also discuss the benefits and limitations of employing such innovative 3D models compared to animal models and 2D cell culture systems in the realm of personalized medicine.
神经发育障碍(NDD)包括一系列以大脑发育异常以及认知、情感和行为功能受损为特征的病症。传统上,转基因动物模型,主要是啮齿动物,是破译驱动NDD生理病理学分子机制的关键工具,并为旨在治疗这些疾病的药物干预措施的开发做出了重大贡献。然而,这些治疗方法在人类中的疗效已被证明是有限的,部分原因是动物模型在重现人类大脑复杂发育和结构方面存在内在局限性,还因为在受影响个体之间发现了表型异质性。诱导多能干细胞(iPSC)领域的重大进展为克服这些挑战提供了一条有前景的途径。的确,用于生成iPSC来源的脑类器官的先进分化方案的开发为探索人类神经发育提供了前所未有的机会。本综述概述了3D脑类器官如何被用于研究各种NDD(即脆性X综合征、雷特综合征、天使综合征、微小脑回畸形、普拉德-威利综合征、蒂莫西综合征、结节性硬化症)并阐明其病理生理学。我们还讨论了在个性化医学领域中,与动物模型和2D细胞培养系统相比,采用这种创新的3D模型的优点和局限性。