Gallego R, Walgraef D, Miguel M S, Toral R
Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Campus UIB, 07071-Palma de Mallorca, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056218. doi: 10.1103/PhysRevE.64.056218. Epub 2001 Oct 23.
The effect of a temporal modulation at three times the critical frequency on a Hopf bifurcation is studied in the framework of amplitude equations. We consider a complex Ginzburg-Landau equation with an extra quadratic term, resulting from the strong coupling between the external field and the unstable modes. We show that, by increasing the intensity of the forcing, one passes from an oscillatory regime to an excitable one with three equivalent frequency-locked states. In the oscillatory regime, topological defects are one-armed phase spirals, while in the excitable regime they correspond to three-armed excitable amplitude spirals. Analytical results show that the transition between these two regimes occurs at a critical value of the forcing intensity. The transition between phase and amplitude spirals is confirmed by numerical analysis and it might be observed in periodically forced reaction-diffusion systems.
在振幅方程的框架下,研究了临界频率三倍的时间调制对霍普夫分岔的影响。我们考虑一个带有额外二次项的复金兹堡 - 朗道方程,该二次项源于外场与不稳定模式之间的强耦合。我们表明,通过增加强迫强度,系统从振荡状态转变为具有三个等效锁频状态的可激发状态。在振荡状态下,拓扑缺陷是单臂相位螺旋,而在可激发状态下,它们对应于三臂可激发振幅螺旋。分析结果表明,这两种状态之间的转变发生在强迫强度的临界值处。相位和振幅螺旋之间的转变通过数值分析得到证实,并且可能在周期性强迫反应扩散系统中观察到。