Devuyst G, Darbellay G A, Vesin J M, Kemény V, Ritter M, Droste D W, Molina C, Serena J, Sztajzel R, Ruchat P, Lucchesi C, Dietler G, Ringelstein E B, Despland P A, Bogousslavsky J
Department of Neurology, CHUV, the Signal Processing Laboratory, Swiss Federal Institute of Technology, Lausanne, Geneva, Switzerland.
Stroke. 2001 Dec 1;32(12):2803-9. doi: 10.1161/hs1201.099714.
Transcranial Doppler (TCD) can detect high-intensity transient signals (HITS) in the cerebral circulation. HITS may correspond to artifacts or solid or gaseous emboli. The aim of this study was to develop an offline automated Doppler system allowing the classification of HITS.
We studied 600 HITS in vivo, including 200 artifacts from normal subjects, 200 solid emboli from patients with symptomatic internal carotid artery stenosis, and 200 gaseous emboli in stroke patients with patent foramen ovale. The study was 2-fold, each part involving 300 HITS (100 of each type). The first 300 HITS (learning set) were used to construct an automated classification algorithm. The remaining 300 HITS (validation set) were used to check the validity of this algorithm. To classify HITS, we combined dual-gate TCD with a wavelet representation and compared it with the current "gold standard," the human experts.
A combination of the peak frequency of HITS and the time delay makes it possible to separate artifacts from emboli. On the validation set, we achieved a sensitivity of 97%, a specificity of 98%, a positive predictive value (PPV) of 99%, and a negative predictive value (NPV) of 94%. To distinguish between solid and gaseous emboli, where positive refers now to the solid emboli, we used the peak frequency, the relative power, and the envelope symmetry of HITS. On the validation set, we achieved a sensitivity of 89%, a specificity of 86%, a conditional PPV of 89%, and a conditional NPV of 89%.
An automated wavelet representation combined with dual-gate TCD can reliably reject artifacts from emboli. From a clinical standpoint, however, this approach has only a fair accuracy in differentiating between solid and gaseous emboli.
经颅多普勒(TCD)可检测脑循环中的高强度瞬态信号(HITS)。HITS可能对应于伪像或固体或气体栓子。本研究的目的是开发一种离线自动多普勒系统,用于对HITS进行分类。
我们对600个体内HITS进行了研究,包括来自正常受试者的200个伪像、来自有症状颈内动脉狭窄患者的200个固体栓子以及卵圆孔未闭的中风患者的200个气体栓子。研究分为两部分,每部分涉及300个HITS(每种类型100个)。前300个HITS(学习集)用于构建自动分类算法。其余300个HITS(验证集)用于检验该算法的有效性。为了对HITS进行分类,我们将双门TCD与小波表示相结合,并将其与当前的“金标准”——人类专家进行比较。
HITS的峰值频率和时间延迟相结合,使得将伪像与栓子区分开来成为可能。在验证集上,我们实现了97%的灵敏度、98%的特异性、99%的阳性预测值(PPV)和94%的阴性预测值(NPV)。为了区分固体和气体栓子,这里阳性现在指固体栓子,我们使用了HITS的峰值频率、相对功率和包络对称性。在验证集上,我们实现了89%的灵敏度、86%的特异性、89%的条件PPV和89%的条件NPV。
自动小波表示与双门TCD相结合可以可靠地排除栓子中的伪像。然而,从临床角度来看,这种方法在区分固体和气体栓子方面的准确性一般。