Zhang S, Sun Y
Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
Biotechnol Bioeng. 2001 Dec 20;75(6):710-7. doi: 10.1002/bit.10067.
The adsorption equilibria of bovine serum albumin (BSA), gamma-globulin, and lysozyme to three kinds of Cibacron blue 3GA (CB)-modified agarose gels, 6% agarose gel-coated steel heads (6AS), Sepharose CL-6B, and a home-made 4% agarose gel (4AB), were studied. We show that ionic strength has irregular effects on BSA adsorption to the CB-modified affinity gels by affecting the interactions between the negatively charged protein and CB as well as CB and the support matrix. At low salt concentrations, the increase in ionic strength decreases the electrostatic repulsion between negatively charged BSA and the negatively charged gel surfaces, thus resulting in the increase of BSA adsorption. This tendency depends on the pore size of the solid matrix, CB coupling density, and the net negative charges of proteins (or aqueous - phase pH value). Sepharose gel has larger average pore size, so the electrostatic repulsion-effected protein exclusion from the small gel pores is observed only for the affinity adsorbent with high CB coupling density (15.4 micromol/mL) at very low ionic strength (NaCl concentration below 0.05 M in 10 mM Tris-HCl buffer, pH 7.5). However, because CB-6AS and CB-4AB have a smaller pore size, the electrostatic exclusion effect can be found at NaCl concentrations of up to 0.2 M. The electrostatic exclusion effect is even found for CB-6AS with a CB density as low as 2.38 micromol/mL. Moreover, the electrostatic exclusion effect decreases with decreasing aqueous-phase pH due to the decrease of the net negative charges of the protein. For gamma-globulin and lysozyme with higher isoelectric points than BSA, the electrostatic exclusion effect is not observed. At higher ionic strength, protein adsorption to the CB-modified adsorbents decreases with increasing ionic strength. It is concluded that the hydrophobic interaction between CB molecules and the support matrix increases with increasing ionic strength, leading to the decrease of ligand density accessible to proteins, and then the decrease of protein adsorption. Thus, due to the hybrid effect of electrostatic and hydrophobic interactions, in most cases studied there exists a salt concentration to maximize BSA adsorption.
研究了牛血清白蛋白(BSA)、γ-球蛋白和溶菌酶在三种汽巴克隆蓝3GA(CB)修饰的琼脂糖凝胶、6%琼脂糖凝胶包被的钢珠(6AS)、Sepharose CL-6B和自制的4%琼脂糖凝胶(4AB)上的吸附平衡。我们发现,离子强度通过影响带负电荷的蛋白质与CB以及CB与支持基质之间的相互作用,对BSA在CB修饰的亲和凝胶上的吸附产生不规则影响。在低盐浓度下,离子强度的增加会降低带负电荷的BSA与带负电荷的凝胶表面之间的静电排斥力,从而导致BSA吸附增加。这种趋势取决于固体基质的孔径、CB偶联密度以及蛋白质的净负电荷(或水相pH值)。Sepharose凝胶的平均孔径较大,因此仅在极低离子强度(10 mM Tris-HCl缓冲液,pH 7.5中NaCl浓度低于0.05 M)下,对于具有高CB偶联密度(15.4 μmol/mL)的亲和吸附剂,才会观察到静电排斥导致蛋白质从小凝胶孔中被排斥的现象。然而,由于CB-6AS和CB-4AB的孔径较小,在NaCl浓度高达0.2 M时仍可发现静电排斥效应。对于CB密度低至2.38 μmol/mL的CB-6AS,甚至也能发现静电排斥效应。此外,由于蛋白质净负电荷的减少,静电排斥效应随水相pH值的降低而减弱。对于等电点高于BSA的γ-球蛋白和溶菌酶,未观察到静电排斥效应。在较高离子强度下,蛋白质在CB修饰的吸附剂上的吸附随离子强度的增加而降低。可以得出结论,CB分子与支持基质之间的疏水相互作用随离子强度的增加而增强,导致蛋白质可利用的配体密度降低,进而导致蛋白质吸附减少。因此,由于静电和疏水相互作用的综合效应,在大多数研究情况下,存在一个使BSA吸附最大化的盐浓度。