Kvamme E, Torgner I A, Roberg B
Neurochemical Section, Institute of Medical Biochemistry, P.O. Box 1115, Blindern, Domus Medica, University of Oslo, Norway.
J Neurosci Res. 2001 Dec 1;66(5):951-8. doi: 10.1002/jnr.10041.
The cellular concentration of phosphate, the main activator of phosphate activated glutaminase (PAG) is rather constant in brain and kidney. The enzyme activity, however, is modulated by a variety of compounds affecting the binding of phosphate, such as glutamate, calcium, certain long chain fatty acids, fatty acyl CoA derivatives, members of the tricarboxylic acid cycle and protons (Kvamme et al. [2000] Neurochem. Res. 25:1407-1419). Therefore, the kinetic and allosteric properties of the enzyme are essential for regulating the enzyme activity in situ, especially because the enzymically active pool of PAG is assumed to have an external localization in the inner mitochondrial membrane, being exposed to cytosolic variation in the content of effectors. This has largely been overlooked. A hypothetical model for the allosteric interactions based on the sequential induced fit allosteric model by Koshland et al. ([1966] Biochemistry 5:365-385) is presented. Furthermore, it has been generally accepted that there exist only two isoforms of PAG, the kidney PAG that is similar to brain PAG, and the liver PAG. Therefore, the immunoreactivity of brain cells against kidney PAG antibodies has been considered a measure of PAG protein. Gomez-Fabre et al. ([2000] Biochem. J. 345:365-375) recently found, however, that a PAG mRNA from human breast cancer ZR75 cells is present in human brain and liver, but not in the kidney. We observed only traces of PAG immunoreactivity in cultured astrocytes and cultured neuroblastoma cells, regardless whether antibodies against the C- and N-termini of kidney PAG or antibodies against liver PAG were used, but considerable enzyme activity, demonstrating hitherto unknown isoforms of PAG (Torgner et al. [2001] FEBS Lett. 268(Suppl 1):PS2-031).
磷酸盐是磷酸激活谷氨酰胺酶(PAG)的主要激活剂,其在脑和肾中的细胞浓度相当恒定。然而,该酶的活性受到多种影响磷酸盐结合的化合物的调节,如谷氨酸、钙、某些长链脂肪酸、脂肪酰辅酶A衍生物、三羧酸循环的成员和质子(克瓦姆等人[2000年]《神经化学研究》25:1407 - 1419)。因此,该酶的动力学和别构性质对于原位调节酶活性至关重要,特别是因为PAG的酶活性池被认为定位于线粒体内膜的外部,暴露于效应物含量的胞质变化中。这一点在很大程度上被忽视了。本文提出了一个基于科什兰德等人([1966年]《生物化学》5:365 - 385)的序列诱导契合别构模型的别构相互作用假设模型。此外,人们普遍认为PAG仅存在两种同工型,即与脑PAG相似的肾PAG和肝PAG。因此,脑细胞对肾PAG抗体的免疫反应性被视为PAG蛋白的一种度量。然而,戈麦斯 - 法布雷等人([2000年]《生物化学杂志》345:365 - 375)最近发现,来自人乳腺癌ZR75细胞的PAG mRNA存在于人脑和肝脏中,但不存在于肾脏中。我们在培养的星形胶质细胞和培养的神经母细胞瘤细胞中仅观察到痕量的PAG免疫反应性,无论使用的是针对肾PAG C端和N端的抗体还是针对肝PAG的抗体,但酶活性相当高,这表明存在迄今未知的PAG同工型(托尔格纳等人[2001年]《欧洲生物化学学会联合会快报》268(增刊1):PS2 - 031)。