Suppr超能文献

ELF magnetic field inhibits gap junctional intercellular communication and induces hyperphosphorylation of connexin43 in NIH3T3 cells.

作者信息

Hu G L, Chiang H, Zeng Q L, Fu Y D

机构信息

Microwave Laboratory, Zhejiang University School of Medicine, Hangzhou 310031, People's Republic of China.

出版信息

Bioelectromagnetics. 2001 Dec;22(8):568-73. doi: 10.1002/bem.85.

Abstract

The effects of extremely low frequency (ELF) magnetic field on gap junctional intercellular communication (GJIC), protein levels, and phosphorylation of connexin43 (Cx43) were studied in NIH3T3 cells. The suppression of GJIC by 24 h, 50 Hz, 0.8 mT ELF magnetic field, 2 h, 3 ng/ml 12-O-tetradecanoylphorbol-13-acetate (TPA), or ELF combined with TPA treatment was confirmed by the fluorescence recovery after photobleaching (FRAP) analysis with a confocal microscope. The results showed that ELF or TPA exposure induced 50-60% inhibition of GJIC (P < 0.01). ELF combined with TPA enhanced the inhibition of GJIC. Western blot analysis using Cx43 specific antibodies showed obviously decreasing non phosphorylated Cx43 (P(0)) induced by ELF and/or TPA exposure. On the other hand, cells treated with ELF and/or TPA displayed a hyperphosphorylated Cx43 band (P(3)). However, there was no obvious changes in the level of Cx43 protein. The results implied that the P(3) band appeared to result from phosphorylation of P(0). But it remains possible that upon the ELF exposure P(0) is converted to P(1), P(2) or both and that P(3) is formed from P(1) or P(2) resulting in the observed hyperphosphorylation pattern. From the present study, we conclude that ELF magnetic field inhibits GJIC and the main mechanism is the hyperphosphorylation of Cx43.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验