Suppr超能文献

意外的连贯性与守恒性。

Unexpected coherence and conservation.

作者信息

Cazelles B, Bottani S, Stone L

机构信息

CNRS UMR 7625-Université Pierre et Marie Curie, 7 quai Saint Bernard, CC 237, 75252 Paris, France.

出版信息

Proc Biol Sci. 2001 Dec 22;268(1485):2595-602. doi: 10.1098/rspb.2001.1843.

Abstract

The effects of migration in a network of patch populations, or metapopulation, are extremely important for predicting the possibility of extinctions both at a local and a global scale. Migration between patches synchronizes local populations and bestows upon them identical dynamics (coherent or synchronous oscillations), a feature that is understood to enhance the risk of global extinctions. This is one of the central theoretical arguments in the literature associated with conservation ecology. Here, rather than restricting ourselves to the study of coherent oscillations, we examine other types of synchronization phenomena that we consider to be equally important. Intermittent and out-of-phase synchronization are but two examples that force us to reinterpret some classical results of the metapopulation theory. In addition, we discuss how asynchronous processes (for example, random timing of dispersal) can paradoxically generate metapopulation synchronization, another non-intuitive result that cannot easily be explained by the standard theory.

摘要

在斑块种群网络(即集合种群)中,迁移的影响对于预测局部和全球范围内物种灭绝的可能性极为重要。斑块之间的迁移使局部种群同步,并赋予它们相同的动态变化(相干或同步振荡),这一特征被认为会增加全球灭绝的风险。这是保护生态学相关文献中的核心理论观点之一。在此,我们并非局限于研究相干振荡,而是考察其他我们认为同样重要的同步现象类型。间歇性同步和异相同步只是促使我们重新解释集合种群理论一些经典结果的两个例子。此外,我们还讨论了异步过程(例如,扩散的随机时间)如何反常地产生集合种群同步,这是另一个标准理论难以轻易解释的非直观结果。

相似文献

1
Unexpected coherence and conservation.
Proc Biol Sci. 2001 Dec 22;268(1485):2595-602. doi: 10.1098/rspb.2001.1843.
2
Allee-like effects in metapopulation dynamics.
Math Biosci. 2004 May;189(1):103-13. doi: 10.1016/j.mbs.2003.06.001.
3
The dynamics of two diffusively coupled predator-prey populations.
Theor Popul Biol. 2001 Mar;59(2):119-31. doi: 10.1006/tpbi.2000.1506.
4
Generalizing Levins metapopulation model in explicit space: models of intermediate complexity.
J Theor Biol. 2008 Nov 7;255(1):152-61. doi: 10.1016/j.jtbi.2008.07.022. Epub 2008 Jul 22.
5
Coherence and conservation.
Science. 2000 Nov 17;290(5495):1360-4. doi: 10.1126/science.290.5495.1360.
6
Extinction dynamics in experimental metapopulations.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3726-31. doi: 10.1073/pnas.0404576102. Epub 2005 Feb 28.
7
On the impact of dispersal asymmetry on metapopulation persistence.
J Theor Biol. 2011 Dec 7;290:37-45. doi: 10.1016/j.jtbi.2011.09.002. Epub 2011 Sep 10.
8
Density-dependent migration and synchronism in metapopulations.
Bull Math Biol. 2006 Feb;68(2):451-65. doi: 10.1007/s11538-005-9054-8. Epub 2006 Apr 4.
9
Population extinctions can increase metapopulation persistence.
Nat Ecol Evol. 2017 Sep;1(9):1271-1278. doi: 10.1038/s41559-017-0271-y. Epub 2017 Aug 21.
10
Landscape fragmentation overturns classical metapopulation thinking.
Proc Natl Acad Sci U S A. 2024 May 14;121(20):e2303846121. doi: 10.1073/pnas.2303846121. Epub 2024 May 6.

引用本文的文献

1
Insights Into Spatial Synchrony Enabled by Long-Term Data.
Ecol Lett. 2025 Apr;28(4):e70112. doi: 10.1111/ele.70112.
2
Threshold-activated transport stabilizes chaotic populations to steady states.
PLoS One. 2017 Aug 25;12(8):e0183251. doi: 10.1371/journal.pone.0183251. eCollection 2017.
3
Balance of Interactions Determines Optimal Survival in Multi-Species Communities.
PLoS One. 2015 Dec 28;10(12):e0145278. doi: 10.1371/journal.pone.0145278. eCollection 2015.
4
Cluster formation in a heterogeneous metapopulation model.
J Math Biol. 2016 May;72(6):1531-53. doi: 10.1007/s00285-015-0916-x. Epub 2015 Aug 14.
5
Analysis of dispersal effects in metapopulation models.
J Math Biol. 2016 Feb;72(3):683-98. doi: 10.1007/s00285-015-0897-9. Epub 2015 Jun 2.
6
Different types of synchrony in chaotic and cyclic communities.
Nat Commun. 2013;4:1359. doi: 10.1038/ncomms2355.
7
Wavelet analysis of ecological time series.
Oecologia. 2008 May;156(2):287-304. doi: 10.1007/s00442-008-0993-2.
8
Extinction dynamics in experimental metapopulations.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3726-31. doi: 10.1073/pnas.0404576102. Epub 2005 Feb 28.

本文引用的文献

1
Synchronized family dynamics in globally coupled maps.
Chaos. 1999 Sep;9(3):738-754. doi: 10.1063/1.166448.
2
Synchronization and coherence in thermodynamic coupled map lattices with intermediate-range coupling.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt B):4966-9. doi: 10.1103/physreve.60.4966.
3
Desynchronization of chaos in coupled logistic maps.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Sep;60(3):2817-30. doi: 10.1103/physreve.60.2817.
4
Blowout bifurcation with non-normal parameters in population dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 1):032901. doi: 10.1103/PhysRevE.64.032901. Epub 2001 Aug 29.
5
Coherence and conservation.
Science. 2000 Nov 17;290(5495):1360-4. doi: 10.1126/science.290.5495.1360.
6
Synchronism in a metapopulation model.
Bull Math Biol. 2000 Mar;62(2):337-49. doi: 10.1006/bulm.1999.0157.
7
Complex dynamics and phase synchronization in spatially extended ecological systems.
Nature. 1999 May 27;399(6734):354-9. doi: 10.1038/20676.
8
Riddling Bifurcation in Chaotic Dynamical Systems.
Phys Rev Lett. 1996 Jul 1;77(1):55-58. doi: 10.1103/PhysRevLett.77.55.
9
Phase synchronization of chaotic oscillators.
Phys Rev Lett. 1996 Mar 11;76(11):1804-1807. doi: 10.1103/PhysRevLett.76.1804.
10
On-off intermittency: A mechanism for bursting.
Phys Rev Lett. 1993 Jan 18;70(3):279-282. doi: 10.1103/PhysRevLett.70.279.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验