Suppr超能文献

不同大小聚乙二醇在OmpF孔蛋白中的分配

Partitioning of differently sized poly(ethylene glycol)s into OmpF porin.

作者信息

Rostovtseva Tatiana K, Nestorovich Ekaterina M, Bezrukov Sergey M

机构信息

Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0924 USA.

出版信息

Biophys J. 2002 Jan;82(1 Pt 1):160-9. doi: 10.1016/S0006-3495(02)75383-6.

Abstract

To understand the physics of polymer equilibrium and dynamics in the confines of ion channel pores, we study partitioning of poly(ethylene glycol)s (PEGs) of different molecular weights into the bacterial porin, OmpF. Thermodynamic and kinetic parameters of partitioning are deduced from the effects of polymer addition on ion currents through single OmpF channels reconstituted into planar lipid bilayer membranes. The equilibrium partition coefficient is inferred from the average reduction of channel conductance in the presence of PEG; rates of polymer exchange between the pore and the bulk are estimated from PEG-induced conductance noise. Partition coefficient as a function of polymer weight is best fitted by a "compressed exponential" with the compression factor of 1.65. This finding demonstrates that PEG partitioning into the OmpF channel pore has sharper dependence on polymer molecular weight than predictions of hard-sphere, random-flight, or scaling models. A 1360-Da polymer separates regimes of partitioning and exclusion. Comparison of its characteristic size with the size of a 2200-Da polymer previously found to separate these regimes for the alpha-toxin shows good agreement with the x-ray structural data for these channels. The PEG-induced conductance noise is compatible with the polymer mobility reduced inside the OmpF pore by an order of magnitude relatively to its value in bulk solution.

摘要

为了理解聚合物在离子通道孔内的平衡和动力学物理过程,我们研究了不同分子量的聚乙二醇(PEG)在细菌孔蛋白OmpF中的分配情况。通过将聚合物添加到重构于平面脂质双分子层膜中的单个OmpF通道上,观察其对离子电流的影响,从而推导出分配的热力学和动力学参数。平衡分配系数可从存在PEG时通道电导的平均降低值推断得出;聚合物在孔与本体之间的交换速率则根据PEG诱导的电导噪声来估计。聚合物重量与分配系数的函数关系最适合用压缩因子为1.65的“压缩指数”来拟合。这一发现表明,PEG在OmpF通道孔中的分配对聚合物分子量的依赖性比硬球、随机飞行或标度模型的预测更为明显。一种1360道尔顿的聚合物分隔了分配和排斥区域。将其特征尺寸与先前发现可分隔α-毒素这些区域的2200道尔顿聚合物的尺寸进行比较,结果与这些通道的X射线结构数据高度吻合。PEG诱导的电导噪声与OmpF孔内聚合物迁移率相对于其在本体溶液中的值降低了一个数量级相一致。

相似文献

1
Partitioning of differently sized poly(ethylene glycol)s into OmpF porin.
Biophys J. 2002 Jan;82(1 Pt 1):160-9. doi: 10.1016/S0006-3495(02)75383-6.
2
Partitioning of individual flexible polymers into a nanoscopic protein pore.
Biophys J. 2003 Aug;85(2):897-910. doi: 10.1016/S0006-3495(03)74529-9.
4
Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel.
Biophys J. 1999 Dec;77(6):3023-33. doi: 10.1016/S0006-3495(99)77133-X.
5
Single channel activity of OmpF-like porin from Yersinia pseudotuberculosis.
Biochim Biophys Acta. 2016 Apr;1858(4):883-91. doi: 10.1016/j.bbamem.2016.02.005. Epub 2016 Feb 17.
6
VCA1008: An Anion-Selective Porin of Vibrio Cholerae.
Biochim Biophys Acta. 2015 Feb;1848(2):680-7. doi: 10.1016/j.bbamem.2014.11.009. Epub 2014 Nov 22.
8
Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin.
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9003-8. doi: 10.1073/pnas.1602716113. Epub 2016 Jul 27.
9
Polymer fractionation in aqueous two-phase polymer systems.
Biotechnol Prog. 1991 May-Jun;7(3):279-82. doi: 10.1021/bp00009a012.
10
Determining the Orientation of Porins in Planar Lipid Bilayers.
Methods Mol Biol. 2021;2186:51-62. doi: 10.1007/978-1-0716-0806-7_5.

引用本文的文献

1
Unique Properties of Nutrient Channels on -Infected Erythrocytes.
Pathogens. 2023 Oct 2;12(10):1211. doi: 10.3390/pathogens12101211.
2
Revealing the single-channel characteristics of OprD (OccAB1) porins from hospital strains of Acinetobacter baumannii.
Eur Biophys J. 2023 Apr;52(3):131-143. doi: 10.1007/s00249-023-01651-2. Epub 2023 Apr 13.
4
Scaling Behavior of Ionic Transport in Membrane Nanochannels.
Nano Lett. 2018 Oct 10;18(10):6604-6610. doi: 10.1021/acs.nanolett.8b03235. Epub 2018 Sep 10.
6
Poly(ethylene glycol)s in Semidilute Regime: Radius of Gyration in the Bulk and Partitioning into a Nanopore.
Macromolecules. 2017 Mar 28;50(6):2477-2483. doi: 10.1021/acs.macromol.6b02571. Epub 2017 Mar 9.
7
Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin.
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9003-8. doi: 10.1073/pnas.1602716113. Epub 2016 Jul 27.
9
Bilayer-spanning DNA nanopores with voltage-switching between open and closed state.
ACS Nano. 2015 Feb 24;9(2):1117-26. doi: 10.1021/nn5039433. Epub 2014 Dec 16.
10
Use of nonelectrolytes reveals the channel size and oligomeric constitution of the Borrelia burgdorferi P66 porin.
PLoS One. 2013 Nov 6;8(11):e78272. doi: 10.1371/journal.pone.0078272. eCollection 2013.

本文引用的文献

3
Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel.
Phys Rev Lett. 2000 Jul 3;85(1):202-5. doi: 10.1103/PhysRevLett.85.202.
4
Probing sugar translocation through maltoporin at the single channel level.
FEBS Lett. 2000 Jul 7;476(3):224-8. doi: 10.1016/s0014-5793(00)01753-1.
5
Ion channels as molecular coulter counters to probe metabolite transport.
J Membr Biol. 2000 Mar 1;174(1):1-13. doi: 10.1007/s002320001026.
6
Common structural features in gramicidin and other ion channels.
Bioessays. 2000 Mar;22(3):227-34. doi: 10.1002/(SICI)1521-1878(200003)22:3<227::AID-BIES4>3.0.CO;2-6.
7
Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel.
Biophys J. 1999 Dec;77(6):3023-33. doi: 10.1016/S0006-3495(99)77133-X.
8
Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae.
Structure. 1999 Apr 15;7(4):425-34. doi: 10.1016/s0969-2126(99)80055-0.
10
Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes.
Biophys J. 1998 Jun;74(6):2918-25. doi: 10.1016/S0006-3495(98)77999-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验