Seifert Astrid, Göpfrich Kerstin, Burns Jonathan R, Fertig Niels, Keyser Ulrich F, Howorka Stefan
Nanion Technologies GmbH , D-80636 Munich, Germany.
ACS Nano. 2015 Feb 24;9(2):1117-26. doi: 10.1021/nn5039433. Epub 2014 Dec 16.
Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology.
由折叠DNA构成的跨膜纳米孔是仿生人造纳米结构的一个最新实例,这类纳米结构可在生物传感、药物递送和纳米流体学领域开拓应用。在本报告中,我们基于典型的六螺旋束结构生成了一种DNA纳米孔,并通过单通道电流记录对其进行系统表征,以解决这一新兴领域中的几个基本科学问题。我们证实,DNA孔呈现出两种电压依赖性电导状态。低跨膜电压有利于稳定的高电导水平,这对应于一个畅通无阻的DNA孔。通过测量电导变化作为聚乙二醇(PEG)大小的函数,证实了开放通道预期的内部宽度,其中假定较小的PEG会进入孔中。PEG大小分析还表明,主要的离子传导路径穿过跨膜通道腔,而不是外孔壁与脂质双层之间的任何假定间隙。在较高电压下,通道呈现出主要的低电导状态,这可能是由电场诱导的DNA孔构象或方向变化引起的。在平面脂质双层以及安装在玻璃纳米吸管上的双层中都观察到了这种开放和关闭状态之间的电压依赖性切换。这些发现解决了之前发表的两种电导之间的差异。通过系统地探索大量参数空间并回答关键问题,我们的报告支持了用于纳米生物技术的DNA纳米孔的开发。