Quillin Michael L, Matthews Brian W
Institute of Molecular Biology, Howard Hughes Medical Institute and Department of Physics, 1229 University of Oregon, Eugene, OR 97403-1229, USA.
Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):97-103. doi: 10.1107/s0907444901018145. Epub 2001 Dec 21.
In recent years, the use of noble-gas complexes for the de novo phasing of protein structures has proven to be a useful alternative to selenomethionine and more traditional derivatives, largely owing to improvements in methods for incorporating noble gases within protein crystals. Advantages of noble-gas derivatives include a high degree of isomorphism when using xenon for multiple isomorphous replacement (MIR) and an easily accessible absorption edge when using krypton for multiwavelength anomalous dispersion (MAD) phasing. One problem with this approach is that not all proteins contain cavities which bind noble gases. Even in proteins which do bind noble gases, the resulting derivative may not be sufficient for phasing. Using T4 lysozyme as an example, it is illustrated how this limitation might be overcome by using 'large-to-small' mutations to introduce potential noble-gas binding sites. Wild-type T4 lysozyme contains a single xenon-binding site. By truncating leucine and phenylalanine residues to alanine, it is possible to generate additional noble-gas binding sites within the core of the protein. Combining rotating-anode data from xenon complexes of wild-type and mutant lysozymes yields MIR phases which compare favorably with those determined from a selenomethionine MAD experiment conducted at a synchrotron. Experience with T4 lysozyme suggests that a leucine-to-alanine substitution made at random in a protein of unknown structure has about a 30% chance of providing a useful derivative. This procedure holds promise for the determination of unknown protein structures, especially when selenomethionine-containing protein is not available or when access to a synchrotron is limited.
近年来,事实证明,使用稀有气体配合物对蛋白质结构进行从头相位测定是硒代蛋氨酸和更传统衍生物的一种有用替代方法,这主要归功于将稀有气体掺入蛋白质晶体的方法有所改进。稀有气体衍生物的优点包括:使用氙进行多同晶置换(MIR)时具有高度同晶性,使用氪进行多波长反常色散(MAD)相位测定时具有易于获取的吸收边。这种方法的一个问题是并非所有蛋白质都含有能结合稀有气体的腔。即使在确实能结合稀有气体的蛋白质中,所得衍生物可能也不足以用于相位测定。以T4溶菌酶为例,说明了如何通过使用“大到小”突变来引入潜在的稀有气体结合位点来克服这一限制。野生型T4溶菌酶含有一个单一的氙结合位点。通过将亮氨酸和苯丙氨酸残基截短为丙氨酸,可以在蛋白质核心内产生额外的稀有气体结合位点。结合野生型和突变型溶菌酶的氙配合物的旋转阳极数据可产生MIR相位,与在同步加速器上进行的硒代蛋氨酸MAD实验所确定的相位相比具有优势。T4溶菌酶的经验表明,在未知结构的蛋白质中随机进行亮氨酸到丙氨酸的取代,有大约30%的机会提供有用的衍生物。这一程序有望用于测定未知蛋白质结构,特别是在无法获得含硒代蛋氨酸的蛋白质或使用同步加速器受限的情况下。