Roose Benjamin W, Zemerov Serge D, Dmochowski Ivan J
University of Pennsylvania, Philadelphia, PA, United States.
University of Pennsylvania, Philadelphia, PA, United States.
Methods Enzymol. 2018;602:249-272. doi: 10.1016/bs.mie.2018.02.005. Epub 2018 Mar 15.
The physiological activity of xenon has long been recognized, though the exact nature of its interactions with biomolecules remains poorly understood. Xe is an inert noble gas, but can act as a general anesthetic, most likely by binding internal hydrophobic cavities within proteins. Understanding Xe-protein interactions, therefore, can provide crucial insight regarding the mechanism of Xe anesthesia and potentially other general anesthetic agents. Historically, Xe-protein interactions have been studied primarily through X-ray crystallography and nuclear magnetic resonance (NMR). In this chapter, we first describe our methods for preparing Xe derivatives of protein crystals and identifying Xe-binding sites. Second, we detail our procedure for Xe hyper-CEST NMR spectroscopy, a versatile NMR technique well suited for characterizing the weak, transient nature of Xe-protein interactions.
氙的生理活性早已为人所知,但其与生物分子相互作用的确切性质仍知之甚少。氙是一种惰性稀有气体,但可作为全身麻醉剂,很可能是通过与蛋白质内部的疏水腔结合来实现的。因此,了解氙与蛋白质的相互作用可以为氙麻醉机制以及潜在的其他全身麻醉剂提供关键见解。从历史上看,氙与蛋白质的相互作用主要通过X射线晶体学和核磁共振(NMR)进行研究。在本章中,我们首先描述制备蛋白质晶体的氙衍生物并确定氙结合位点的方法。其次,我们详细介绍氙超化学交换饱和转移(hyper-CEST)核磁共振波谱法的步骤,这是一种通用的核磁共振技术,非常适合表征氙与蛋白质相互作用的微弱、短暂性质。