Butera R J, Wilson C G, Delnegro C A, Smith J C
School of Elecrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA.
IEEE Trans Biomed Eng. 2001 Dec;48(12):1460-70. doi: 10.1109/10.966605.
We present a novel approach to implementing the dynamic-clamp protocol (Sharp et al., 1993), commonly used in neurophysiology and cardiac electrophysiology experiments. Our approach is based on real-time extensions to the Linux operating system. Conventional PC-based approaches have typically utilized single-cycle computational rates of 10 kHz or slower. In thispaper, we demonstrate reliable cycle-to-cycle rates as fast as 50 kHz. Our system, which we call model reference current injection (MRCI); pronounced merci is also capable of episodic logging of internal state variables and interactive manipulation of model parameters. The limiting factor in achieving high speeds was not processor speed or model complexity, but cycle jitter inherent in the CPU/motherboard performance. We demonstrate these high speeds and flexibility with two examples: 1) adding action-potential ionic currents to a mammalian neuron under whole-cell patch-clamp and 2) altering a cell's intrinsic dynamics via MRCI while simultaneously coupling it via artificial synapses to an internal computational model cell. These higher rates greatly extend the applicability of this technique to the study of fast electrophysiological currents such fast a currents and fast excitatory/inhibitory synapses.
我们提出了一种实现动态钳制协议(夏普等人,1993年)的新颖方法,该协议常用于神经生理学和心脏电生理学实验。我们的方法基于对Linux操作系统的实时扩展。传统的基于个人计算机的方法通常使用10千赫或更低的单周期计算速率。在本文中,我们展示了高达50千赫的可靠逐周期速率。我们的系统,我们称之为模型参考电流注入(MRCI);发音为merci,还能够对内部状态变量进行间歇性记录以及对模型参数进行交互式操作。实现高速的限制因素不是处理器速度或模型复杂性,而是CPU/主板性能中固有的周期抖动。我们用两个例子展示了这些高速和灵活性:1)在全细胞膜片钳下向哺乳动物神经元添加动作电位离子电流,2)通过MRCI改变细胞的内在动力学,同时通过人工突触将其耦合到内部计算模型细胞。这些更高的速率极大地扩展了该技术在研究快速电生理电流(如快速电流和快速兴奋性/抑制性突触)方面的适用性。