Suppr超能文献

检验后概率的区间:5种方法的比较

Intervals for posttest probabilities: a comparison of 5 methods.

作者信息

Mossman D, Berger J O

机构信息

Division of Forensic Psychiatry, Wright State University School of Medicine, Dayton, Ohio, 45401-0927, USA.

出版信息

Med Decis Making. 2001 Nov-Dec;21(6):498-507. doi: 10.1177/0272989X0102100608.

Abstract

BACKGROUND

Several medical articles discuss methods of constructing confidence intervals for single proportions and the likelihood ratio, but scant attention has been given to the systematic study of intervals for the posterior odds, or the positive predictive value, of a test.

METHODS

The authors describe 5 methods of constructing confidence intervals for posttest probabilities when estimates of sensitivity, specificity, and the pretest probability of a disorder are derived from empirical data. They then evaluate each method to determine how well the intervals' coverage properties correspond to their nominal value.

RESULTS

When the estimates of pretest probabilities, sensitivity, and specificity are derived from more than 80 subjects and are not close to 0 or 1, all methods generate intervals with appropriate coverage properties. When these conditions are not met, however, the best-performing method is an objective Bayesian approach implemented by a simple simulation using a spreadsheet.

CONCLUSION

Physicians and investigators can generate accurate confidence intervals for posttest probabilities in small-sample situations using the objective Bayesian approach.

摘要

背景

多篇医学文章讨论了构建单比例置信区间和似然比的方法,但对检验的后验概率或阳性预测值区间的系统研究关注甚少。

方法

作者描述了5种在从经验数据得出敏感性、特异性和疾病的验前概率估计值时构建检验后概率置信区间的方法。然后他们评估每种方法,以确定区间的覆盖特性与其标称值的符合程度。

结果

当验前概率、敏感性和特异性的估计值来自80多个受试者且不接近0或1时,所有方法生成的区间都具有适当的覆盖特性。然而,当这些条件不满足时,表现最佳的方法是通过使用电子表格进行简单模拟实现的客观贝叶斯方法。

结论

医生和研究人员可以使用客观贝叶斯方法在小样本情况下生成检验后概率的准确置信区间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验