Suppr超能文献

2×2列联表中用于比较比例的贝叶斯置信区间的频率主义性能

Frequentist performance of Bayesian confidence intervals for comparing proportions in 2 x 2 contingency tables.

作者信息

Agresti Alan, Min Yongyi

机构信息

Department of Statistics, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Biometrics. 2005 Jun;61(2):515-23. doi: 10.1111/j.1541-0420.2005.031228.x.

Abstract

This article investigates the performance, in a frequentist sense, of Bayesian confidence intervals (CIs) for the difference of proportions, relative risk, and odds ratio in 2 x 2 contingency tables. We consider beta priors, logit-normal priors, and related correlated priors for the two binomial parameters. The goal was to analyze whether certain settings for prior parameters tend to provide good coverage performance regardless of the true association parameter values. For the relative risk and odds ratio, we recommend tail intervals over highest posterior density (HPD) intervals, for invariance reasons. To protect against potentially very poor coverage probabilities when the effect is large, it is best to use a diffuse prior, and we recommend the Jeffreys prior. Otherwise, with relatively small samples, Bayesian CIs using more informative (even uniform) priors tend to have poorer performance than the frequentist CIs based on inverting score tests, which perform uniformly quite well for these parameters.

摘要

本文从频率主义的角度研究了2×2列联表中比例差异、相对风险和比值比的贝叶斯置信区间(CI)的性能。我们考虑了两个二项式参数的贝塔先验、对数正态先验以及相关的相关先验。目标是分析先验参数的某些设置是否倾向于提供良好的覆盖性能,而与真实的关联参数值无关。出于不变性的原因,对于相对风险和比值比,我们推荐尾部区间而非最高后验密度(HPD)区间。为了防止在效应较大时出现潜在的极差覆盖概率,最好使用弥散先验,我们推荐杰弗里斯先验。否则,在样本相对较小时,使用信息性更强(甚至均匀)先验的贝叶斯CI往往比基于反转得分检验的频率主义CI性能更差,后者对于这些参数的表现一直相当不错。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验