Qian G, Chellappa R, Zheng Q
Department of Electrical and Computer Engineering, Center for Automation Research, University of Maryland, College Park, Maryland 20742-3275, USA.
J Opt Soc Am A Opt Image Sci Vis. 2001 Dec;18(12):2982-97. doi: 10.1364/josaa.18.002982.
The utility of using inertial data for the structure-from-motion (SfM) problem is addressed. We show how inertial data can be used for improved noise resistance, reduction of inherent ambiguities, and handling of mixed-domain sequences. We also show that the number of feature points needed for accurate and robust SfM estimation can be significantly reduced when inertial data are employed. Cramér-Rao lower bounds are computed to quantify the improvements in estimating motion parameters. A robust extended-Kalman-filter-based SfM algorithm using inertial data is then developed to fully exploit the inertial information. This algorithm has been tested by using synthetic and real image sequences, and the results show the efficacy of using inertial data for the SfM problem.
探讨了使用惯性数据解决运动结构(SfM)问题的效用。我们展示了惯性数据如何用于提高抗噪性、减少固有模糊性以及处理混合域序列。我们还表明,当使用惯性数据时,准确且稳健的SfM估计所需的特征点数量可以显著减少。计算克拉美罗下界以量化估计运动参数方面的改进。然后开发了一种基于鲁棒扩展卡尔曼滤波器的使用惯性数据的SfM算法,以充分利用惯性信息。该算法已通过使用合成图像序列和真实图像序列进行测试,结果表明了使用惯性数据解决SfM问题的有效性。