Suppr超能文献

利用惯性数据进行鲁棒的运动结构估计。

Robust structure from motion estimation using inertial data.

作者信息

Qian G, Chellappa R, Zheng Q

机构信息

Department of Electrical and Computer Engineering, Center for Automation Research, University of Maryland, College Park, Maryland 20742-3275, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2001 Dec;18(12):2982-97. doi: 10.1364/josaa.18.002982.

Abstract

The utility of using inertial data for the structure-from-motion (SfM) problem is addressed. We show how inertial data can be used for improved noise resistance, reduction of inherent ambiguities, and handling of mixed-domain sequences. We also show that the number of feature points needed for accurate and robust SfM estimation can be significantly reduced when inertial data are employed. Cramér-Rao lower bounds are computed to quantify the improvements in estimating motion parameters. A robust extended-Kalman-filter-based SfM algorithm using inertial data is then developed to fully exploit the inertial information. This algorithm has been tested by using synthetic and real image sequences, and the results show the efficacy of using inertial data for the SfM problem.

摘要

探讨了使用惯性数据解决运动结构(SfM)问题的效用。我们展示了惯性数据如何用于提高抗噪性、减少固有模糊性以及处理混合域序列。我们还表明,当使用惯性数据时,准确且稳健的SfM估计所需的特征点数量可以显著减少。计算克拉美罗下界以量化估计运动参数方面的改进。然后开发了一种基于鲁棒扩展卡尔曼滤波器的使用惯性数据的SfM算法,以充分利用惯性信息。该算法已通过使用合成图像序列和真实图像序列进行测试,结果表明了使用惯性数据解决SfM问题的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验