Knollmann B C, Katchman A N, Franz M R
Clinical Pharmacology and Cardiology Division, Georgetown University Medical Center, Washington, DC 20422, USA.
J Cardiovasc Electrophysiol. 2001 Nov;12(11):1286-94. doi: 10.1046/j.1540-8167.2001.01286.x.
The monophasic action potential (MAP) technique has been validated in humans and larger animals, but, in mice, MAP recordings available to date show little resemblance to the murine ventricular transmembrane action potential (TAP) measured by conventional microelectrodes. We developed a miniaturized MAP contact electrode technique to establish in isolated mouse hearts: (1) optimal electrode size; (2) validation against TAP; (3) relationship between repolarization and refractoriness; and (4) regional repolarization differences.
In 30 Langendorff-perfused mouse hearts, MAP electrodes of tip diameter 1.5, 1.0, and 0.25 mm were tested by comparing MAPs and TAPs from epicardial and endocardial surfaces of both ventricles. Only the MAP contact electrode of 0.25-mm tip diameter consistently produced MAP recordings that had wave shapes nearly identical to TAP recordings. MAP durations measured at 30%, 50%, 70%, and 90% repolarization (APD30, APD50, APD70, APD90) highly correlated with TAP measurements (r = 0.97, P < 0.00001). APD50 was significantly longer in endocardial than in epicardial recordings (right ventricle: 9.3+/-1.1 msec vs 3.9+/-1.1 msec; left ventricle: 9.9+/-2.1 msec vs 6.2+/-1.9 msec; both P < 0.001), demonstrating transmural repolarization differences. Effective refractory period (ERP) determined at basic cycle lengths from 70 to 200 msec correlated with 80%+/-6% of total repolarization, with an ERP/APD90 ratio of 0.85+/-0.14.
Murine myocardial repolarization, regional repolarization heterogeneity, and relation to refractoriness can be assessed reliably by this miniaturized MAP contact electrode technique, which renders action potential wave shapes similar to that of intracellular microelectrodes. This technique may be useful for exploring repolarization abnormalities in genetically altered mice.
单相动作电位(MAP)技术已在人类和大型动物中得到验证,但在小鼠中,迄今为止可用的MAP记录与通过传统微电极测量的小鼠心室跨膜动作电位(TAP)几乎没有相似之处。我们开发了一种小型化的MAP接触电极技术,以在离体小鼠心脏中确定:(1)最佳电极尺寸;(2)与TAP的验证;(3)复极化与不应期之间的关系;以及(4)区域复极化差异。
在30个Langendorff灌注的小鼠心脏中,通过比较两个心室的心外膜和心内膜表面的MAP和TAP,测试了尖端直径为1.5、1.0和0.25mm的MAP电极。只有尖端直径为0.25mm的MAP接触电极始终产生波形与TAP记录几乎相同的MAP记录。在复极化30%、50%、70%和90%时测量的MAP持续时间(APD30、APD50、APD70、APD90)与TAP测量高度相关(r = 0.97,P < 0.00001)。心内膜记录中的APD50明显长于心外膜记录(右心室:9.3±1.1毫秒对3.9±1.1毫秒;左心室:9.9±2.1毫秒对6.2±1.9毫秒;均P < 0.001),表明存在跨壁复极化差异。在70至200毫秒的基本周期长度下确定的有效不应期(ERP)与总复极化的80%±6%相关,ERP/APD90比值为0.85±0.14。
这种小型化的MAP接触电极技术可以可靠地评估小鼠心肌复极化、区域复极化异质性及其与不应期的关系,该技术使动作电位波形类似于细胞内微电极。该技术可能有助于探索基因改变小鼠的复极化异常。