Meng Y, Whiting P, Zibareva L, Bertho G, Girault J P, Lafont R, Dinan L
Department of Biological Sciences, University of Exeter, Hatherly Laboratories, Devon, UK.
J Chromatogr A. 2001 Nov 23;935(1-2):309-19. doi: 10.1016/s0021-9673(01)00893-7.
Many species in the genus Silene (Caryophyllaceae) have previously been shown to contain ecdysteroids and this genus is recognised as a good source of novel ecdysteroid analogues. We have used ecdysteroid-specific radioimmunoassays and the microplate-based Drosophila melanogaster B(II) cell bioassay for ecdysteroid agonist and antagonist activities to identify further phytoecdysteroid-containing species in this genus. The main ecdysteroid components from 10 Silene species (S. antirrhina, S. chlorifolia, S. cretica, S. disticha, S. echinata, S. italica, S. portensis, S. pseudotites, S. radicosa, S. regia) were isolated and identified, mainly by normal-phase and reversed-phase high-performance liquid chromatography. The amount of each ecdysteroid was determined by comparing chromatogram peak areas with those for reference 20-hydroxyecdysone (20E) on reversed-phase HPLC. 20E is the most abundant ecdysteroid in each of the Silene extracts. Polypodine B, 2-deoxy-20-hydroxyecdysone and ecdysone are also common ecdysteroids in these Silene species, but the proportions of these ecdysteroids vary between the Silene species. HPLC proved to be a quick and effective way to screen Silene species, determine ecdysteroid profiles and, hence, identify extracts containing novel analogues. An extract of the aerial parts of S. pseudotites was found to contain several new ecdysteroids. These have been isolated and identified spectroscopically (by NMR and mass spectrometry) as 2-deoxyecdysone 22beta-D-glucoside, 2-deoxy-20,26-dihydroxyecdysone and 2-deoxypolypodine B 3beta-D-glucoside. Additionally, (5alpha-H)-2-deoxyintegristerone A (5alpha-2H 91%, 5alpha-1H 9%) was isolated as an artefact. This study contributes to the understanding of ecdysteroid distribution in Silene species and provides further information on the chemotaxonomic significance of ecdysteroids in Silene species.
以前已经证明,蝇子草属(石竹科)中的许多物种都含有蜕皮甾类,并且该属被认为是新型蜕皮甾类类似物的良好来源。我们使用了蜕皮甾类特异性放射免疫测定法以及基于微孔板的黑腹果蝇B(II)细胞生物测定法来检测蜕皮甾类激动剂和拮抗剂活性,以鉴定该属中更多含植物蜕皮甾类的物种。主要通过正相和反相高效液相色谱法,分离并鉴定了10种蝇子草属植物(反曲蝇子草、绿叶蝇子草、克里特蝇子草、叉歧蝇子草、刺叶蝇子草、意大利蝇子草、波特蝇子草、假繁缕蝇子草、块根蝇子草、帝王蝇子草)中的主要蜕皮甾类成分。通过将反相高效液相色谱图上的峰面积与参考标准20-羟基蜕皮酮(20E)的峰面积进行比较,来测定每种蜕皮甾类的含量。20E是每种蝇子草提取物中含量最丰富的蜕皮甾类。多足甾酮B、2-脱氧-20-羟基蜕皮酮和蜕皮酮也是这些蝇子草属植物中常见的蜕皮甾类,但这些蜕皮甾类的比例在不同的蝇子草属植物之间有所不同。高效液相色谱法被证明是筛选蝇子草属植物、确定蜕皮甾类谱以及鉴定含有新型类似物提取物的快速有效方法。发现假繁缕蝇子草地上部分的提取物含有几种新的蜕皮甾类。通过光谱法(核磁共振和质谱)将它们分离并鉴定为2-脱氧蜕皮酮22β-D-葡萄糖苷、2-脱氧-20,26-二羟基蜕皮酮和2-脱氧多足甾酮B 3β-D-葡萄糖苷。此外,还分离出了(5α-H)-2-脱氧整合甾酮A(5α-2H占91%,5α-1H占9%),这是一种人工产物。这项研究有助于了解蜕皮甾类在蝇子草属植物中的分布,并提供了有关蜕皮甾类在蝇子草属植物中化学分类学意义的更多信息。