Suppr超能文献

侧向连接对脉冲神经元网络群体编码准确性的影响。

Effect of lateral connections on the accuracy of the population code for a network of spiking neurons.

作者信息

Spiridon M, Gerstner W

机构信息

Center for Neuromimetic Systems, Swiss Federal Institute of Technology, Lausanne.

出版信息

Network. 2001 Nov;12(4):409-21.

Abstract

We study how neuronal connections in a population of spiking neurons affect the accuracy of stimulus estimation. Neurons in our model code for a one-dimensional orientation variable phi. Connectivity between two neurons depends on the absolute difference absolute value(phi - phi') between the preferred orientation of the two neurons. We derive an analytical expression of the activity profile for a population of neurons described by the spike response model with noisy threshold. We estimate the stimulus orientation and the trial-to-trial fluctuations using the population vector method. For stationary stimuli, uniform inhibitory connections produce a more reliable estimation of the stimulus than short-range excitatory connections with long-range inhibitions, although the latter interaction type produces a sharper tuning curve. These results are consistent with previous analytical studies of the Fisher information.

摘要

我们研究了一群发放脉冲的神经元中的神经连接如何影响刺激估计的准确性。我们模型中的神经元编码一个一维方向变量phi。两个神经元之间的连接性取决于这两个神经元偏好方向之间的绝对差值|phi - phi'|。我们推导了由具有噪声阈值的脉冲响应模型描述的一群神经元的活动分布的解析表达式。我们使用群体向量法估计刺激方向和逐次试验波动。对于静止刺激,均匀抑制性连接比具有长程抑制的短程兴奋性连接能产生更可靠的刺激估计,尽管后一种相互作用类型会产生更尖锐的调谐曲线。这些结果与之前关于费希尔信息的分析研究一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验