Suppr超能文献

针对有限刺激空间的最优神经元调谐。

Optimal neuronal tuning for finite stimulus spaces.

作者信息

Brown W Michael, Bäcker Alex

机构信息

Computational Biology, Sandia National Laboratories, Albuquerque, NM 87123, USA.

出版信息

Neural Comput. 2006 Jul;18(7):1511-26. doi: 10.1162/neco.2006.18.7.1511.

Abstract

The efficiency of neuronal encoding in sensory and motor systems has been proposed as a first principle governing response properties within the central nervous system. We present a continuation of a theoretical study presented by Zhang and Sejnowski, where the influence of neuronal tuning properties on encoding accuracy is analyzed using information theory. When a finite stimulus space is considered, we show that the encoding accuracy improves with narrow tuning for one- and two-dimensional stimuli. For three dimensions and higher, there is an optimal tuning width.

摘要

神经元编码在感觉和运动系统中的效率已被提出作为支配中枢神经系统内反应特性的首要原则。我们展示了张和塞乔诺斯基提出的一项理论研究的延续,其中使用信息论分析了神经元调谐特性对编码准确性的影响。当考虑有限的刺激空间时,我们表明对于一维和二维刺激,编码准确性随着调谐变窄而提高。对于三维及更高维度,存在一个最佳调谐宽度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验