Abdoul-Carime H, Sanche L
Groupe des Instituts de Recherche en Santé du Canada en Sciences des Radiations, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
Int J Radiat Biol. 2002 Feb;78(2):89-99. doi: 10.1080/09553000110090016.
To investigate the dependence of base identity and sequence on the damage induced by low-energy (1-30 eV) electron impact on a short single strand of DNA.
Monolayers of homogeneous nonamers of deoxycytidine and thymidine (dCy9 and T9) and heterogeneous nonamers of thymidine substituted with 33 and 66% of deoxycytidine (dCy3-T6 and dCy6-T3) were chemisorbed onto a gold substrate. They were bombarded under ultrahigh vacuum conditions by a 1-30 eV electron beam. Neutral fragments desorbed from the films were detected by a mass spectrometer. From partial pressure measurements, the effective cross-section (ECS) per base for desorption of various fragments was estimated.
CN, OCN and/or H2NCN were the major neutral species observed to desorb in the present experiments. A small contribution of 55 amu neutral species, tentatively attributed to CH3CCO, were only detected from fragmentation of oligonucleotides containing thymine. The total ECS per base estimated for the CN, OCN and CH3CCO species production from fragmentation of dCy9, dCy6-T3, dCy3-T6 and T9 at 12 eV incident electron energy were (3.4, 2.0, 2.9 and 2.3) x 10(-17) cm(2), respectively. The incident electron energy dependence of ECS for desorption of these fragments exhibited structures <20 eV, which are characteristic of transient anion formation.
At incident electron energies <20 eV, neutral fragment desorption arise from dissociation of the DNA bases, principally via dissociative electron attachment and/or decay of the transient anion into a dissociative electronic excited state of the base. Non-resonant mechanisms (e.g. direct dipolar dissociation) mostly control the fragmentation processes >20 eV. From comparison of the electron energy dependence of the ECS for base fragmentation in the homo- and heteronucleotides, it is concluded that damage to a short DNA strand is dependent on base identity, sequence and electron energy.
研究碱基同一性和序列对低能(1 - 30电子伏特)电子轰击短单链DNA所诱导损伤的依赖性。
将脱氧胞苷和胸苷的均一非聚体(dCy9和T9)以及用33%和66%脱氧胞苷取代的胸苷的异质非聚体(dCy3 - T6和dCy6 - T3)单层化学吸附到金基底上。在超高真空条件下,用1 - 30电子伏特的电子束对它们进行轰击。用质谱仪检测从薄膜解吸的中性碎片。通过分压测量,估算了各种碎片解吸的每碱基有效截面(ECS)。
CN、OCN和/或H2NCN是本实验中观察到解吸的主要中性物质。仅从含有胸腺嘧啶的寡核苷酸片段化中检测到少量暂定归因于CH3CCO的55原子质量单位中性物质。在12电子伏特入射电子能量下,dCy9、dCy6 - T3、dCy3 - T6和T9片段化产生CN、OCN和CH3CCO物质的每碱基总ECS分别为(3.4、2.0、2.9和2.3)×10(-17)平方厘米。这些碎片解吸的ECS对入射电子能量的依赖性在<20电子伏特时呈现出结构,这是瞬态阴离子形成的特征。
在入射电子能量<20电子伏特时,中性碎片解吸源于DNA碱基的解离,主要通过解离电子附着和/或瞬态阴离子衰变为碱基的解离电子激发态。非共振机制(如直接偶极解离)在>20电子伏特时主要控制碎片化过程。通过比较同核苷酸和异核苷酸中碱基碎片化的ECS对电子能量的依赖性,得出短DNA链的损伤取决于碱基同一性、序列和电子能量的结论。