Suppr超能文献

通过I类氨酰tRNA合成酶的突变来阻断错误激活氨基酸的位点间易位。

Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase.

作者信息

Bishop Anthony C, Nomanbhoy Tyzoon K, Schimmel Paul

机构信息

The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Beckman Center, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):585-90. doi: 10.1073/pnas.012611299. Epub 2002 Jan 8.

Abstract

The genetic code is established by the aminoacylation reactions of tRNA synthetases. Its accuracy depends on editing reactions that prevent amino acids from being assigned to incorrect codons. A group of class I synthetases share a common insertion that encodes a distinct site for editing that is about 30 A from the active site. Both misactivated aminoacyl adenylates and mischarged amino acids attached to tRNA are translocated to this site, which, in turn, is divided into subsites--one for the adenylate and one for the aminoacyl moiety attached to tRNA. Here we report that a specific mutation in isoleucyl-tRNA synthetase prevents editing by blocking translocation. The mutation alters a widely conserved residue that is believed to tether the amino group of mischarged tRNA to its subsite for editing. These and other data support a model where editing is initiated by translocation of the misacylated amino acid attached to tRNA to create an "editing complex" that facilitates subsequent rounds of editing by translocation of the misactivated adenylate.

摘要

遗传密码由tRNA合成酶的氨酰化反应确立。其准确性取决于防止氨基酸被分配到错误密码子的校正反应。一组I类合成酶有一个共同的插入序列,该序列编码一个距离活性位点约30埃的独特校正位点。错误激活的氨酰腺苷酸和连接在tRNA上的错配氨基酸都会被转运到这个位点,该位点又分为两个亚位点——一个用于腺苷酸,一个用于连接在tRNA上的氨酰部分。我们在此报告,异亮氨酰-tRNA合成酶中的一个特定突变通过阻断转运来阻止校正。该突变改变了一个广泛保守的残基,该残基被认为将错配tRNA的氨基拴在其用于校正的亚位点上。这些以及其他数据支持了这样一个模型,即校正由连接在tRNA上的错配氨基酸的转运引发,以形成一个“校正复合物”,该复合物通过错误激活的腺苷酸的转运促进后续的校正轮次。

相似文献

1
Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase.
Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):585-90. doi: 10.1073/pnas.012611299. Epub 2002 Jan 8.
3
Errors from selective disruption of the editing center in a tRNA synthetase.
Biochemistry. 2000 Jul 18;39(28):8180-6. doi: 10.1021/bi0004798.
4
Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase.
Biochemistry. 2014 Oct 7;53(39):6189-98. doi: 10.1021/bi5007699. Epub 2014 Sep 23.
5
Interstice mutations that block site-to-site translocation of a misactivated amino acid bound to a class I tRNA synthetase.
Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):490-4. doi: 10.1073/pnas.0237335100. Epub 2003 Jan 6.
6
Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
J Mol Biol. 2006 Jun 16;359(4):901-12. doi: 10.1016/j.jmb.2006.04.025. Epub 2006 Apr 25.
8
Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine.
J Biol Chem. 2004 Feb 27;279(9):8396-402. doi: 10.1074/jbc.M312830200. Epub 2003 Dec 12.
9
Mutational isolation of a sieve for editing in a transfer RNA synthetase.
Science. 1994 Apr 8;264(5156):265-7. doi: 10.1126/science.8146659.
10
Mutational separation of two pathways for editing by a class I tRNA synthetase.
Mol Cell. 2002 Feb;9(2):353-62. doi: 10.1016/s1097-2765(02)00449-5.

引用本文的文献

1
Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases.
Nucleic Acids Res. 2022 Apr 22;50(7):4029-4041. doi: 10.1093/nar/gkac207.
2
Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme.
RSC Chem Biol. 2021 Jan 15;2(1):230-240. doi: 10.1039/d0cb00142b.
3
Discovery and Investigation of Natural Editing Function against Artificial Amino Acids in Protein Translation.
ACS Cent Sci. 2017 Jan 25;3(1):73-80. doi: 10.1021/acscentsci.6b00339. Epub 2016 Dec 23.
5
Aminoacyl-tRNA Synthetases in the Bacterial World.
EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0002-2016.
6
Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent Pre-transfer Editing.
J Biol Chem. 2016 Apr 15;291(16):8618-31. doi: 10.1074/jbc.M115.698225. Epub 2016 Feb 26.
8
Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase.
Biochemistry. 2014 Oct 7;53(39):6189-98. doi: 10.1021/bi5007699. Epub 2014 Sep 23.
9
tRNA synthetase: tRNA aminoacylation and beyond.
Wiley Interdiscip Rev RNA. 2014 Jul-Aug;5(4):461-80. doi: 10.1002/wrna.1224. Epub 2014 Apr 4.
10
Inhibition of isoleucyl-tRNA synthetase as a potential treatment for human African Trypanosomiasis.
J Biol Chem. 2013 May 17;288(20):14256-14263. doi: 10.1074/jbc.M112.447441. Epub 2013 Apr 2.

本文引用的文献

2
Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway.
Science. 2001 Apr 20;292(5516):501-4. doi: 10.1126/science.1057718.
5
Errors from selective disruption of the editing center in a tRNA synthetase.
Biochemistry. 2000 Jul 18;39(28):8180-6. doi: 10.1021/bi0004798.
6
Nucleotide determinants for tRNA-dependent amino acid discrimination by a class I tRNA synthetase.
Biochemistry. 1999 Dec 21;38(51):16898-903. doi: 10.1021/bi9920782.
9
Enzyme structure with two catalytic sites for double-sieve selection of substrate.
Science. 1998 Apr 24;280(5363):578-82. doi: 10.1126/science.280.5363.578.
10
The complete genome sequence of Escherichia coli K-12.
Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验