Döring V, Mootz H D, Nangle L A, Hendrickson T L, de Crécy-Lagard V, Schimmel P, Marlière P
Evologic SA, 4 rue Pierre Fontaine, 91000 Evry, France.
Science. 2001 Apr 20;292(5516):501-4. doi: 10.1126/science.1057718.
Aminoacyl transfer RNA (tRNA) synthetases establish the rules of the genetic code by catalyzing the aminoacylation of tRNAs. For some synthetases, accuracy depends critically on an editing function at a site distinct from the aminoacylation site. Mutants of Escherichia coli that incorrectly charge tRNA(Val) with cysteine were selected after random mutagenesis of the whole chromosome. All mutations obtained were located in the editing site of valyl-tRNA synthetase. More than 20% of the valine in cellular proteins from such an editing mutant organism could be replaced with the noncanonical aminobutyrate, sterically similar to cysteine. Thus, the editing function may have played a central role in restricting the genetic code to 20 amino acids. Disabling this editing function offers a powerful approach for diversifying the chemical composition of proteins and for emulating evolutionary stages of ambiguous translation.
氨酰基转移核糖核酸(tRNA)合成酶通过催化tRNA的氨酰化反应来确立遗传密码规则。对于某些合成酶而言,准确性关键取决于一个与氨酰化位点不同的位点上的编辑功能。在对大肠杆菌整个染色体进行随机诱变后,筛选出了将半胱氨酸错误负载到tRNA(Val)上的突变体。所获得的所有突变均位于缬氨酰-tRNA合成酶的编辑位点。来自这种编辑突变生物体的细胞蛋白质中超过20%的缬氨酸可被空间结构与半胱氨酸相似的非标准氨基丁酸替代。因此,编辑功能可能在将遗传密码限制为20种氨基酸的过程中发挥了核心作用。禁用这种编辑功能为使蛋白质的化学组成多样化以及模拟模糊翻译的进化阶段提供了一种强有力的方法。