Völler Jan-Stefan, Dulic Morana, Gerling-Driessen Ulla I M, Biava Hernan, Baumann Tobias, Budisa Nediljko, Gruic-Sovulj Ita, Koksch Beate
Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany.
Department of Chemistry, Faculty of Science, University of Zagreb , Horvatovac 102a, 10000 Zagreb, Croatia.
ACS Cent Sci. 2017 Jan 25;3(1):73-80. doi: 10.1021/acscentsci.6b00339. Epub 2016 Dec 23.
Fluorine being not substantially present in the chemistry of living beings is an attractive element in tailoring novel chemical, biophysical, and pharmacokinetic properties of peptides and proteins. The hallmark of ribosome-mediated artificial amino acid incorporation into peptides and proteins is a broad substrate tolerance, which is assumed to rely on the absence of evolutionary pressure for efficient editing of artificial amino acids. We used the well-characterized editing proficient isoleucyl-tRNA synthetase (IleRS) from to investigate the crosstalk of aminoacylation and editing activities against fluorinated amino acids. We show that translation of trifluoroethylglycine (TfeGly) into proteins is prevented by hydrolysis of TfeGly-tRNA in the IleRS post-transfer editing domain. The remarkable observation is that dissociation of TfeGly-tRNA from IleRS is significantly slowed down. This finding is in sharp contrast to natural editing reactions by tRNA synthetases wherein fast editing rates for the noncognate substrates are essential to outcompete fast aa-tRNA dissociation rates. Using a post-transfer editing deficient mutant of IleRS (IleRSAla10), we were able to achieve ribosomal incorporation of TfeGly in vivo. Our work expands the knowledge of ribosome-mediated artificial amino acid translation with detailed analysis of natural editing function against an artificial amino acid providing an impulse for further systematic investigations and engineering of the translation and editing of unusual amino acids.
由于氟在生物化学中基本不存在,因此它是一种具有吸引力的元素,可用于定制肽和蛋白质的新型化学、生物物理和药代动力学特性。核糖体介导的人工氨基酸掺入肽和蛋白质的一个显著特点是广泛的底物耐受性,这被认为依赖于缺乏对人工氨基酸进行有效编辑的进化压力。我们使用来自的特征明确的具有编辑能力的异亮氨酰 - tRNA合成酶(IleRS)来研究针对氟化氨基酸的氨酰化和编辑活性之间的相互作用。我们表明,在IleRS的转移后编辑结构域中,三氟乙基甘氨酸(TfeGly) - tRNA的水解会阻止TfeGly掺入蛋白质。值得注意的是,TfeGly - tRNA从IleRS上的解离显著减慢。这一发现与tRNA合成酶的天然编辑反应形成鲜明对比,在天然编辑反应中,非同源底物的快速编辑速率对于胜过快速的氨酰 - tRNA解离速率至关重要。使用IleRS的转移后编辑缺陷突变体(IleRSAla10),我们能够在体内实现TfeGly的核糖体掺入。我们的工作通过对针对人工氨基酸的天然编辑功能进行详细分析,扩展了对核糖体介导的人工氨基酸翻译的认识,为进一步系统研究和工程化异常氨基酸的翻译与编辑提供了动力。