Suppr超能文献

营养限制条件下大肠杆菌群体中mutY的调控及突变体突变的性质

Regulation of mutY and nature of mutator mutations in Escherichia coli populations under nutrient limitation.

作者信息

Notley-McRobb Lucinda, Pinto Rachel, Seeto Shona, Ferenci Thomas

机构信息

Department of Microbiology G08, University of Sydney, New South Wales 2006, Australia.

出版信息

J Bacteriol. 2002 Feb;184(3):739-45. doi: 10.1128/JB.184.3.739-745.2002.

Abstract

Previous analysis of aerobic, glucose-limited continuous cultures of Escherichia coli revealed that G:C-to-T:A (G:C-->T:A) transversions were the most commonly occurring type of spontaneous mutation. One possible explanation for the preponderance of these mutations was that nutrient limitation repressed MutY-dependent DNA repair, resulting in increased proportions of G:C-->T:A transversions. The regulation of the mutY-dependent DNA repair system was therefore studied with a transcriptional mutY-lacZ fusion recombined into the chromosome. Expression from the mutY promoter was fourfold higher under aerobic conditions than under anaerobic conditions. But mutY expression was higher in glucose- or ammonia-limited chemostats than in nutrient-excess batch culture, so mutY was not downregulated by nutrient limitation. An alternative explanation for the frequency of G:C-->T:A transversions was the common appearance of mutY mutator mutations in the chemostat populations. Of 11 chemostat populations screened in detail, six contained mutators, and the mutator mutation in four cultures was located in the region of mutY at 66 min on the chromosome. The spectrum of mutations and rate of mutation in these isolates were fully consistent with a mutY-deficiency in each strain. Based on PCR analysis of the region within and around mutY, isolates from three individual populations contained deletions extending at least 2 kb upstream of mutY and more than 5 kb downstream. In the fourth population, the deletion was even longer, extending at least 5 kb upstream and 5 kb downstream of mutY. The isolation of mutY mutator strains from four independent populations with extensive chromosomal rearrangements suggests that mutY inactivation by deletion is a means of increasing mutation rates under nutrient limitation and explains the observed frequency of G:C-->T:A mutations in glucose-limited chemostats.

摘要

先前对大肠杆菌需氧、葡萄糖受限连续培养物的分析表明,G:C到T:A(G:C→T:A)颠换是最常见的自发突变类型。这些突变占优势的一种可能解释是营养限制抑制了MutY依赖性DNA修复,导致G:C→T:A颠换的比例增加。因此,利用重组到染色体中的转录mutY-lacZ融合体研究了MutY依赖性DNA修复系统的调控。在需氧条件下,mutY启动子的表达比厌氧条件下高四倍。但在葡萄糖或氨受限的恒化器中,mutY的表达高于营养过剩的分批培养,因此mutY不会因营养限制而下调。G:C→T:A颠换频率的另一种解释是恒化器群体中常见mutY突变体突变。在详细筛选的11个恒化器群体中,有6个含有突变体,4个培养物中的突变体突变位于染色体上66分钟处的mutY区域。这些分离株中的突变谱和突变率与每个菌株中的mutY缺陷完全一致。基于对mutY及其周围区域的PCR分析,来自三个单独群体的分离株含有至少延伸到mutY上游2 kb和下游5 kb以上的缺失。在第四个群体中,缺失甚至更长,延伸到mutY上游至少5 kb和下游5 kb。从四个具有广泛染色体重排的独立群体中分离出mutY突变体菌株,这表明通过缺失使mutY失活是在营养限制下增加突变率的一种方式,并解释了在葡萄糖受限的恒化器中观察到的G:C→T:A突变频率。

相似文献

1
2
Enrichment and elimination of mutY mutators in Escherichia coli populations.
Genetics. 2002 Nov;162(3):1055-62. doi: 10.1093/genetics/162.3.1055.
4
Interactions among the Escherichia coli mutT, mutM, and mutY damage prevention pathways.
DNA Repair (Amst). 2003 Feb 3;2(2):159-73. doi: 10.1016/s1568-7864(02)00193-3.
6
Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA.
Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7022-5. doi: 10.1073/pnas.89.15.7022.
7
MutY repair is mutagenic in mutT- strains of Escherichia coli.
Can J Microbiol. 1993 Sep;39(9):892-4. doi: 10.1139/m93-133.
9
DNA repair and sequence context affect (1)O(2)-induced mutagenesis in bacteria.
Nucleic Acids Res. 2001 Jul 1;29(13):2899-903. doi: 10.1093/nar/29.13.2899.

引用本文的文献

1
Development of a genome-targeting mutator for the adaptive evolution of microbial cells.
Nucleic Acids Res. 2022 Apr 22;50(7):e38. doi: 10.1093/nar/gkab1244.
3
Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E9026-E9035. doi: 10.1073/pnas.1705887114. Epub 2017 Oct 10.
5
Bypass of genetic constraints during mutator evolution to antibiotic resistance.
Proc Biol Sci. 2015 Apr 7;282(1804):20142698. doi: 10.1098/rspb.2014.2698.
6
The functional basis of adaptive evolution in chemostats.
FEMS Microbiol Rev. 2015 Jan;39(1):2-16. doi: 10.1111/1574-6976.12082. Epub 2014 Dec 4.
7
Ex uno plures: clonal reinforcement drives evolution of a simple microbial community.
PLoS Genet. 2014 Jun 26;10(6):e1004430. doi: 10.1371/journal.pgen.1004430. eCollection 2014 Jun.
8
Experimental evolution and the dynamics of genomic mutation rate modifiers.
Heredity (Edinb). 2014 Nov;113(5):375-80. doi: 10.1038/hdy.2014.49. Epub 2014 May 21.
9
Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.
PLoS Genet. 2013 Oct;9(10):e1003927. doi: 10.1371/journal.pgen.1003927. Epub 2013 Oct 24.
10
Adaptive laboratory evolution -- principles and applications for biotechnology.
Microb Cell Fact. 2013 Jul 1;12:64. doi: 10.1186/1475-2859-12-64.

本文引用的文献

1
COMPETITION BETWEEN HIGH AND LOW MUTATING STRAINS OF ESCHERICHIA COLI.
Evolution. 1983 Jan;37(1):125-134. doi: 10.1111/j.1558-5646.1983.tb05521.x.
3
Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations.
Environ Microbiol. 1999 Feb;1(1):33-43. doi: 10.1046/j.1462-2920.1999.00002.x.
4
Experimental analysis of molecular events during mutational periodic selections in bacterial evolution.
Genetics. 2000 Dec;156(4):1493-501. doi: 10.1093/genetics/156.4.1493.
6
High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection.
Science. 2000 May 19;288(5469):1251-4. doi: 10.1126/science.288.5469.1251.
7
An efficient recombination system for chromosome engineering in Escherichia coli.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83. doi: 10.1073/pnas.100127597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验