Suppr超能文献

计算机模拟染色体染色:从整个人类基因组序列重建吉姆萨带。

In silico chromosome staining: reconstruction of Giemsa bands from the whole human genome sequence.

作者信息

Niimura Yoshihito, Gojobori Takashi

机构信息

Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540, Japan.

出版信息

Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):797-802. doi: 10.1073/pnas.022437999. Epub 2002 Jan 15.

Abstract

Giemsa staining has been used for identifying individual human chromosomes. Giemsa-dark and -light bands generally are thought to correspond to GC-poor and GC-rich regions; however, several experiments showed that the correspondence is quite poor. To elucidate the precise relationship between GC content and Giemsa banding patterns, we developed an "in silico chromosome staining" method for reconstructing Giemsa bands computationally from the whole human genome sequence. Here we show that 850-level Giemsa bands are best correlated with the difference in GC content between a local window of 2.5 megabases and a regional window of 9.3 megabases along a chromosome. The correlations are of strong statistical significance for almost all 43 chromosomal arms. Our results clearly show that Giemsa-dark bands are locally GC-poor regions compared with the flanking regions. These findings are consistent with the model that matrix-associated regions, which are known to be AT-rich, are present more densely in Giemsa-dark bands than in -light bands.

摘要

吉姆萨染色法已被用于识别单个人类染色体。通常认为吉姆萨深染带和浅染带分别对应富含AT和富含GC的区域;然而,多项实验表明这种对应关系相当差。为了阐明GC含量与吉姆萨带型之间的确切关系,我们开发了一种“电子染色体染色”方法,用于从整个人类基因组序列中通过计算重建吉姆萨带。在此我们表明,850级吉姆萨带与沿着染色体的2.5兆碱基的局部窗口和9.3兆碱基的区域窗口之间的GC含量差异具有最佳相关性。对于几乎所有43条染色体臂,这种相关性都具有很强的统计学意义。我们的结果清楚地表明,与侧翼区域相比,吉姆萨深染带是局部GC贫乏区域。这些发现与以下模型一致:已知富含AT的基质相关区域在吉姆萨深染带中比在浅染带中分布更密集。

相似文献

1
In silico chromosome staining: reconstruction of Giemsa bands from the whole human genome sequence.
Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):797-802. doi: 10.1073/pnas.022437999. Epub 2002 Jan 15.
6
Gene density in the Giemsa bands of human chromosomes.
Chromosome Res. 2000;8(8):737-46. doi: 10.1023/a:1026797522102.
7
A unification of mosaic structures in the human genome.
Hum Mol Genet. 2003 Oct 1;12(19):2411-5. doi: 10.1093/hmg/ddg251. Epub 2003 Jul 29.
8
Identifying different types of chromatin using Giemsa staining.
Methods Mol Biol. 2014;1094:25-38. doi: 10.1007/978-1-62703-706-8_3.

引用本文的文献

1
Chromosome Bandings and Recognition.
Methods Mol Biol. 2024;2825:137-150. doi: 10.1007/978-1-0716-3946-7_7.
2
Emergence and influence of sequence bias in evolutionarily malleable, mammalian tandem arrays.
BMC Biol. 2023 Aug 23;21(1):179. doi: 10.1186/s12915-023-01673-4.
3
Exploring chromatin hierarchical organization via Markov State Modelling.
PLoS Comput Biol. 2018 Dec 31;14(12):e1006686. doi: 10.1371/journal.pcbi.1006686. eCollection 2018 Dec.
4
The Isochores as a Fundamental Level of Genome Structure and Organization: A General Overview.
J Mol Evol. 2017 Mar;84(2-3):93-103. doi: 10.1007/s00239-017-9785-9. Epub 2017 Feb 27.
5
Accelerating the search for the missing proteins in the human proteome.
Nat Commun. 2017 Jan 24;8:14271. doi: 10.1038/ncomms14271.
6
Copy Number Studies in Noisy Samples.
Microarrays (Basel). 2013 Nov 6;2(4):284-303. doi: 10.3390/microarrays2040284.
7
Integrated small copy number variations and epigenome maps of disorders of sex development.
Hum Genome Var. 2016 Jun 9;3:16012. doi: 10.1038/hgv.2016.12. eCollection 2016.
8
Integration of HIV in the Human Genome: Which Sites Are Preferential? A Genetic and Statistical Assessment.
Int J Genomics. 2016;2016:2168590. doi: 10.1155/2016/2168590. Epub 2016 May 12.
9
A human B cell methylome at 100-base pair resolution.
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):671-8. doi: 10.1073/pnas.0812399106. Epub 2009 Jan 12.
10
A new platform linking chromosomal and sequence information.
Chromosome Res. 2007;15(3):327-39. doi: 10.1007/s10577-007-1129-y. Epub 2007 May 10.

本文引用的文献

1
Chromosome territories, nuclear architecture and gene regulation in mammalian cells.
Nat Rev Genet. 2001 Apr;2(4):292-301. doi: 10.1038/35066075.
2
Gene density in the Giemsa bands of human chromosomes.
Chromosome Res. 2000;8(8):737-46. doi: 10.1023/a:1026797522102.
3
The DNA sequence of human chromosome 21.
Nature. 2000 May 18;405(6784):311-9. doi: 10.1038/35012518.
4
Isochores and the evolutionary genomics of vertebrates.
Gene. 2000 Jan 4;241(1):3-17. doi: 10.1016/s0378-1119(99)00485-0.
5
The DNA sequence of human chromosome 22.
Nature. 1999 Dec 2;402(6761):489-95. doi: 10.1038/990031.
6
Isochores result from mutation not selection.
Nature. 1999 Jul 1;400(6739):30-1. doi: 10.1038/21804.
7
Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei.
Chromosome Res. 1997 May;5(3):157-66. doi: 10.1023/a:1018438729203.
9
Mathematical model to predict regions of chromatin attachment to the nuclear matrix.
Nucleic Acids Res. 1997 Apr 1;25(7):1419-25. doi: 10.1093/nar/25.7.1419.
10
Chromatin domains and prediction of MAR sequences.
Int Rev Cytol. 1995;162A:279-388. doi: 10.1016/s0074-7696(08)61234-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验