Ljungberg Maria, Starck Göran, Vikhoff-Baaz Barbro, Alpsten Magne, Ekholm Sven, Forssell-Aronsson Eva
Department of Radiation Physics, Göteborg University, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden.
MAGMA. 2002 Mar;14(1):30-8. doi: 10.1007/BF02668184.
It is well known that the quality of a quantitative 31P MRS measurement relies largely on the performance of the volume selection method, and that image selected in vivo spectroscopy (ISIS) suffers from contaminating signal caused mostly by T1 smearing. However, these signal errors and their magnitude are seldom addressed in clinical studies. The aim of this study was therefore to investigate the magnitude of signal errors in 31P MRS when using ISIS. The results from the measurements with a homogeneous head phantom are as follows: at low TR/T1 ratios the contamination increases rapidly, especially for small (<27 cm3) VOI sizes; at TR/T1=1, the signal from a 27 cm3 VOI was 20% too high, and from an 8 cm3 VOI 150% too high. The signal obtained from different VOI positions varied between 80 and 127%. The signal varied linearly with the 31P concentration in the object. However, a too high signal was obtained when the concentration was lower in the region of interest (inner container) than in the rest of the phantom. The agreement between the simulations and measurements shows that the results of this study are generally applicable to the measurement geometry and the ISIS experiment order rather than being specific for the MR system studied. The errors obtained both experimentally and in computer simulations are too large to be ignored in clinical studies using the ISIS pulse sequence.