Finken Reimar, Schmidt Matthias, Löwen Hartmut
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 2):016108. doi: 10.1103/PhysRevE.65.016108. Epub 2001 Dec 14.
We investigate the system of D-dimensional hard spheres in D-dimensional space, where D>3. For the fluid phase of these hyperspheres, we generalize scaled-particle theory to arbitrary D and furthermore use the virial expansion and the Percus-Yevick integral equation. For the crystalline phase, we adopt cell theory based on elementary geometrical assumptions about close-packed lattices. Regardless of the approximation applied, and for dimensions as high as D=50, we find a first-order freezing transition, which preempts the Kirkwood second-order instability of the fluid. The relative density jump increases with D, and a generalized Lindemann rule of melting holds. We have also used ideas from fundamental-measure theory to obtain a free energy density functional for hard hyperspheres. Finally, we have calculated the surface tension of a hypersphere fluid near a hard smooth (hyper-)wall within scaled-particle theory.
我们研究在D维空间中D维硬球系统,其中D>3。对于这些超球的流体相,我们将标度粒子理论推广到任意D,并进一步使用维里展开和珀库斯-耶维克积分方程。对于晶相,我们采用基于关于密堆积晶格的基本几何假设的元胞理论。无论应用何种近似,对于高达D=50的维度,我们都发现了一级冻结转变,它先于流体的柯克伍德二级不稳定性。相对密度跃变随D增加,并且存在广义的林德曼熔化规则。我们还利用了基本度量理论的思想来获得硬超球的自由能密度泛函。最后,我们在标度粒子理论内计算了硬超球流体在硬光滑(超)壁附近的表面张力。