Rohrmann René D, Santos Andrés
Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051202. doi: 10.1103/PhysRevE.76.051202. Epub 2007 Nov 15.
The structural properties of single component fluids of hard hyperspheres in odd space dimensionalities d are studied with an analytical approximation method that generalizes the rational function approximation earlier introduced in the study of hard-sphere fluids [S. B. Yuste and A. Santos, Phys. Rev. A 43, 5418 (1991)]. The theory makes use of the exact form of the radial distribution function to first order in density and extends it to finite density by assuming a rational form for a function defined in Laplace space, the coefficients being determined by simple physical requirements. Fourier transform in terms of reverse Bessel polynomials constitute the mathematical framework of this approximation, from which an analytical expression for the static structure factor is obtained. In its most elementary form, the method recovers the solution of the Percus-Yevick closure to the Ornstein-Zernike equation for hyperspheres at odd dimensions. The present formalism allows one to go beyond by yielding solutions with thermodynamic consistency between the virial and compressibility routes to any desired equation of state. Excellent agreement with available computer simulation data at d=5 and d=7 is obtained.
利用一种解析近似方法研究了奇数空间维数d下硬超球单组分流体的结构性质,该方法推广了早期在硬球流体研究中引入的有理函数近似方法[S. B. 尤斯特和A. 桑托斯,《物理评论A》43, 5418 (1991)]。该理论利用径向分布函数在密度一阶的精确形式,并通过假设拉普拉斯空间中定义的一个函数为有理形式将其扩展到有限密度,系数由简单的物理要求确定。用反向贝塞尔多项式进行傅里叶变换构成了这种近似的数学框架,由此得到了静态结构因子的解析表达式。在其最基本的形式中,该方法恢复了奇数维超球的奥恩斯坦 - 泽尼克方程的珀库斯 - 耶维克封闭解。目前的形式体系允许通过在维里和压缩性途径之间产生具有热力学一致性的解来超越这一点,以得到任何所需的状态方程。在d = 5和d = 7时与现有的计算机模拟数据取得了极好的一致性。