Rohrmann René D, Santos Andrés
Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE-CONICET), Avenida España 1512 Sur, 5400 San Juan, Argentina.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041203. doi: 10.1103/PhysRevE.84.041203. Epub 2011 Oct 24.
Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E 83, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms c(ij)(k) of the direct correlation functions defined by the OZ relation. From the analysis of the poles of c(ij)(k) we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
多组分硬球流体在奇数维下的结构和热力学性质最近已在有理函数近似(RFA)框架下得到推导[罗尔曼和桑托斯,《物理评论E》83,011201(2011)]。本文证明,对于任意奇数维的二元混合物,RFA技术给出了奥恩斯坦 - 泽尔尼克(OZ)方程的珀库斯 - 耶维克(PY)封闭的精确解。证明主要依赖于由OZ关系定义的直接关联函数的傅里叶变换c(ij)(k)。通过对c(ij)(k)的极点分析,我们表明,如PY理论所要求的,由RFA方法评估的直接关联函数在硬核外消失。