Suppr超能文献

渗透压应激对关节软骨细胞黏弹性和物理特性的影响。

The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes.

作者信息

Guilak Farshid, Erickson Geoffrey R, Ting-Beall H Ping

机构信息

Orthopaedic Research Laboratories, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710 USA.

出版信息

Biophys J. 2002 Feb;82(2):720-7. doi: 10.1016/S0006-3495(02)75434-9.

Abstract

The metabolic activity of chondrocytes in articular cartilage is influenced by alterations in the osmotic environment of the tissue, which occur secondary to mechanical compression. The mechanism by which osmotic stress modulates cell physiology is not fully understood and may involve changes in the physical properties of the membrane or the cytoskeleton. The goal of this study was to determine the effect of the osmotic environment on the mechanical and physical properties of chondrocytes. In isoosmotic medium, chondrocytes exhibited a spherical shape with numerous membrane ruffles. Normalized cell volume was found to be linearly related to the reciprocal of the extracellular osmolality (Boyle van't Hoff relationship) with an osmotically active intracellular water fraction of 61%. In deionized water, chondrocytes swelled monotonically until lysis at a mean apparent membrane area 234 +/- 49% of the initial area. Biomechanically, chondrocytes exhibited viscoelastic solid behavior. The instantaneous and equilibrium elastic moduli and the apparent viscosity of the cell were significantly decreased by hypoosmotic stress, but were unchanged by hyperosmotic stress. Changes in the viscoelastic properties were paralleled by the rapid dissociation and remodeling of cortical actin in response to hypoosmotic stress. These findings indicate that the physicochemical environment has a strong influence on the viscoelastic and physical properties of the chondrocyte, potentially through alterations in the actin cytoskeleton.

摘要

关节软骨中软骨细胞的代谢活性受组织渗透环境变化的影响,这种变化继发于机械压缩。渗透应激调节细胞生理的机制尚未完全了解,可能涉及细胞膜或细胞骨架物理性质的改变。本研究的目的是确定渗透环境对软骨细胞机械和物理性质的影响。在等渗培养基中,软骨细胞呈球形,有许多膜皱褶。发现归一化细胞体积与细胞外渗透压的倒数呈线性关系(玻意耳-范特霍夫关系),细胞内具有渗透活性的水分数为61%。在去离子水中,软骨细胞单调肿胀,直至在平均表观膜面积为初始面积的234±49%时裂解。在生物力学方面,软骨细胞表现出粘弹性固体行为。低渗应激显著降低了细胞的瞬时弹性模量、平衡弹性模量和表观粘度,但高渗应激对其无影响。粘弹性特性的变化与皮质肌动蛋白在低渗应激下的快速解离和重塑平行。这些发现表明,物理化学环境可能通过肌动蛋白细胞骨架的改变,对软骨细胞的粘弹性和物理性质产生强烈影响。

相似文献

1
The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes.
Biophys J. 2002 Feb;82(2):720-7. doi: 10.1016/S0006-3495(02)75434-9.
3
Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage.
J Orthop Res. 2000 Nov;18(6):891-8. doi: 10.1002/jor.1100180607.
4
The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes.
Osteoarthritis Cartilage. 2015 Feb;23(2):289-99. doi: 10.1016/j.joca.2014.11.003. Epub 2014 Nov 11.
5
Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes.
Osteoarthritis Cartilage. 2003 Mar;11(3):187-97. doi: 10.1053/s1063-4584(02)00347-3.
8
The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes.
J Orthop Res. 2004 Jan;22(1):131-9. doi: 10.1016/S0736-0266(03)00150-5.
10
Nonlinear osmotic properties of the cell nucleus.
Ann Biomed Eng. 2009 Mar;37(3):477-91. doi: 10.1007/s10439-008-9618-5. Epub 2008 Dec 24.

引用本文的文献

1
Viscoelastic recovery times of chondrocytes measured using a novel 3D-printed microfluidic device.
Meas Sci Technol. 2025 Aug 31;36(8):085701. doi: 10.1088/1361-6501/adf65a. Epub 2025 Aug 12.
2
Water and ions binding to extracellular matrix drives stress relaxation, aiding MRI detection of swelling-associated pathology.
Nat Biomed Eng. 2025 May;9(5):772-786. doi: 10.1038/s41551-025-01369-w. Epub 2025 Apr 15.
3
Cytoskeletal activation of NHE1 regulates mechanosensitive cell volume adaptation and proliferation.
Cell Rep. 2024 Dec 24;43(12):114992. doi: 10.1016/j.celrep.2024.114992. Epub 2024 Nov 22.
4
Mechanism study on the influences of buffer osmotic pressure on microfluidic chip-based cell electrofusion.
APL Bioeng. 2024 Apr 17;8(2):026103. doi: 10.1063/5.0205100. eCollection 2024 Jun.
5
Cortical tension promotes Kibra degradation via Par-1.
Mol Biol Cell. 2024 Jan 1;35(1):ar2. doi: 10.1091/mbc.E23-06-0246. Epub 2023 Oct 30.
7
Membrane stretch as the mechanism of activation of PIEZO1 ion channels in chondrocytes.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2221958120. doi: 10.1073/pnas.2221958120. Epub 2023 Jul 17.
8
Calcium signaling of primary chondrocytes and ATDC5 chondrogenic cells under osmotic stress and mechanical stimulation.
J Biomech. 2022 Dec;145:111388. doi: 10.1016/j.jbiomech.2022.111388. Epub 2022 Nov 17.
9
Superficial zone chondrocytes can get compacted under physiological loading: A multiscale finite element analysis.
Acta Biomater. 2023 Jun;163:248-258. doi: 10.1016/j.actbio.2022.10.013. Epub 2022 Oct 13.
10
Cell membrane fluidity and ROS resistance define DMSO tolerance of cryopreserved synovial MSCs and HUVECs.
Stem Cell Res Ther. 2022 May 3;13(1):177. doi: 10.1186/s13287-022-02850-y.

本文引用的文献

2
Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes.
J Cell Physiol. 2001 Jun;187(3):304-14. doi: 10.1002/jcp.1077.
3
Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage.
J Orthop Res. 2000 Nov;18(6):891-8. doi: 10.1002/jor.1100180607.
7
Dynamic study of cell mechanical and structural responses to rapid changes of calcium level.
Cell Motil Cytoskeleton. 2000 Feb;45(2):93-105. doi: 10.1002/(SICI)1097-0169(200002)45:2<93::AID-CM2>3.0.CO;2-Z.
8
Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels.
J Biomech. 2000 Jan;33(1):81-95. doi: 10.1016/s0021-9290(99)00160-8.
9
Micropipette aspiration of living cells.
J Biomech. 2000 Jan;33(1):15-22. doi: 10.1016/s0021-9290(99)00175-x.
10
Role of the F-actin cytoskeleton in the RVD and RVI processes in Ehrlich ascites tumor cells.
Exp Cell Res. 1999 Oct 10;252(1):63-74. doi: 10.1006/excr.1999.4615.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验