Hatcher Mary E, Hu Jingui G, Belenky Marina, Verdegem Peter, Lugtenburg Johan, Griffin Robert G, Herzfeld Judith
Department of Chemistry, Brandeis University, Waltham Massachusetts 02454, USA.
Biophys J. 2002 Feb;82(2):1017-29. doi: 10.1016/S0006-3495(02)75461-1.
By varying the pH, the D85N mutant of bacteriorhodopsin provides models for several photocycle intermediates of the wild-type protein in which D85 is protonated. At pH 10.8, NMR spectra of [zeta-(15)N]lys-, [12-(13)C]retinal-, and [14,15-(13)C]retinal-labeled D85N samples indicate a deprotonated, 13-cis,15-anti chromophore. On the other hand, at neutral pH, the NMR spectra of D85N show a mixture of protonated Schiff base species similar to that seen in the wild-type protein at low pH, and more complex than the two-state mixture of 13-cis,15-syn, and all-trans isomers found in the dark-adapted wild-type protein. These results lead to several conclusions. First, the reversible titration of order in the D85N chromophore indicates that electrostatic interactions have a major influence on events in the active site. More specifically, whereas a straight chromophore is preferred when the Schiff base and residue 85 are oppositely charged, a bent chromophore is found when both the Schiff base and residue 85 are electrically neutral, even in the dark. Thus a "bent" binding pocket is formed without photoisomerization of the chromophore. On the other hand, when photoisomerization from the straight all-trans,15-anti configuration to the bent 13-cis,15-anti does occur, reciprocal thermodynamic linkage dictates that neutralization of the SB and D85 (by proton transfer from the former to the latter) will result. Second, the similarity between the chromophore chemical shifts in D85N at alkaline pH and those found previously in the M(n) intermediate of the wild-type protein indicate that the latter has a thoroughly relaxed chromophore like the subsequent N intermediate. By comparison, indications of L-like distortion are found for the chromophore of the M(o) state. Thus, chromophore strain is released in the M(o)-->M(n) transition, probably coincident with, and perhaps instrumental to, the change in the connectivity of the Schiff base from the extracellular side of the membrane to the cytoplasmic side. Because the nitrogen chemical shifts of the Schiff base indicate interaction with a hydrogen-bond donor in both M states, it is possible that a water molecule travels with the Schiff base as it switches connectivity. If so, the protein is acting as an inward-driven hydroxyl pump (analogous to halorhodopsin) rather than an outward-driven proton pump. Third, the presence of a significant C [double bond] N syn component in D85N at neutral pH suggests that rapid deprotonation of D85 is necessary at the end of the wild-type photocycle to avoid the generation of nonfunctional C [double bond] N syn species.
通过改变pH值,细菌视紫红质的D85N突变体为野生型蛋白质中D85质子化的几种光循环中间体提供了模型。在pH 10.8时,[ζ-(15)N]赖氨酸、[12-(13)C]视黄醛和[14,15-(13)C]视黄醛标记的D85N样品的核磁共振谱表明存在去质子化的13-顺式、15-反式发色团。另一方面,在中性pH值下,D85N的核磁共振谱显示出质子化席夫碱物种的混合物,类似于在低pH值下野生型蛋白质中观察到的混合物,并且比暗适应野生型蛋白质中发现的13-顺式、15-顺式和全反式异构体的双态混合物更复杂。这些结果得出了几个结论。首先,D85N发色团中有序性的可逆滴定表明静电相互作用对活性位点中的事件有重大影响。更具体地说,当席夫碱和85位残基带相反电荷时,直的发色团是优选的,而当席夫碱和85位残基都是电中性时,即使在黑暗中也会发现弯曲的发色团。因此,在发色团没有光异构化的情况下形成了一个“弯曲的”结合口袋。另一方面,当从直的全反式、15-反式构型到弯曲的13-顺式、15-反式的光异构化确实发生时,相互的热力学联系表明席夫碱和D85的中和(通过质子从前者转移到后者)将会发生。其次,D85N在碱性pH值下的发色团化学位移与野生型蛋白质先前在M(n)中间体中发现的化学位移之间的相似性表明,后者具有像随后的N中间体一样完全松弛的发色团。相比之下,发现M(o)状态的发色团有类似L的畸变迹象。因此,发色团应变在M(o)→M(n)转变中释放,这可能与席夫碱从膜的细胞外侧到细胞质侧的连接变化同时发生,并且可能对其有帮助。由于席夫碱的氮化学位移表明在两种M状态下都与氢键供体相互作用,因此有可能当席夫碱切换连接时,水分子会与它一起移动。如果是这样,该蛋白质起向内驱动的羟基泵(类似于嗜盐视紫红质)的作用,而不是向外驱动的质子泵。第三,D85N在中性pH值下存在显著的C=N顺式成分表明,在野生型光循环结束时,D85的快速去质子化是必要的,以避免产生无功能的C=N顺式物种。