Suppr超能文献

细菌视紫红质的视网膜席夫碱-抗衡离子复合物:光循环过程中几何结构的变化是质子转移至天冬氨酸85的原因。

The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85.

作者信息

Brown L S, Gat Y, Sheves M, Yamazaki Y, Maeda A, Needleman R, Lanyi J K

机构信息

Department of Physiology and Biophysics, University of California, Irvine 92717.

出版信息

Biochemistry. 1994 Oct 11;33(40):12001-11. doi: 10.1021/bi00206a001.

Abstract

Bacteriorhodopsin contains all-trans-retinal linked via a protonated Schiff base to K216. The proton transport in this pump is initiated by all-trans to 13-cis photoisomerization of the retinal and the ensuing transfer of the Schiff base proton to D85. Changed geometrical relationship of the Schiff base and D85 after the photoisomerization is a possible reason for the proton transfer. We introduced small volume/shape changes with site-specific mutagenesis of residues V49 and A53 that contact the side chain of K216, in order to force the Schiff base into somewhat different positions relative to D85. Earlier [Zimányi, L., Váró, G., Chang, M., Ni, B., Needleman, R., & Lanyi, J. K. (1992) Biochemistry 31, 8535-8543] we had described the kinetics of absorbance changes in the microsecond to millisecond time range after photoexcitation with the scheme L<-->M1<-->M2 + H+ (where the first equilibrium is the internal proton transfer and the second is proton release on the extracellular surface). Testing it at various pH values with mutants, where selected rate constants are changed, now confirms the validity of this scheme. The kinetics of the M state thus allowed examination of the transient equilibrium that develops in the L<-->M1 reaction and represents the redistribution of the proton between the Schiff base and D85. From the structure of the protein, the V49A and V49M residue replacements were both predicted to cause decreased alignment of the Schiff base and D85, and indeed we found that they both changed the equilibrium toward the protonated Schiff base. In contrast, the residue replacements A53V and A53G were predicted to move the Schiff base in opposite directions, away from and closer to alignment with D85, respectively. The former indeed changed the equilibrium toward the protonated Schiff base and the latter toward the deprotonated Schiff base. In addition, the hydroxyl stretch band of a bound water in the L state was affected by all mutations that disfavor proton transfer to D85. We conclude that the geometry of the proton donor and acceptor in the Schiff base-D85 pair, mediated by bound water, is a determinant of the proton transfer equilibrium.

摘要

细菌视紫红质含有通过质子化席夫碱与赖氨酸216相连的全反式视黄醛。该泵中的质子传输始于视黄醛从全反式向13 - 顺式的光异构化以及随之而来的席夫碱质子向天冬氨酸85的转移。光异构化后席夫碱与天冬氨酸85几何关系的改变可能是质子转移的原因。我们通过对与赖氨酸216侧链接触的缬氨酸49和丙氨酸53残基进行位点特异性诱变引入了小体积/形状变化,以迫使席夫碱相对于天冬氨酸85处于略有不同的位置。此前[齐马尼伊,L.,瓦罗,G.,张,M.,倪,B.,尼德曼,R.,& 兰伊,J. K.(1992年)《生物化学》31卷,8535 - 8543页]我们用L⇌M1⇌M2 + H⁺的反应式描述了光激发后微秒到毫秒时间范围内吸光度变化的动力学(其中第一个平衡是内部质子转移,第二个是细胞外表面的质子释放)。用选定速率常数发生变化的突变体在不同pH值下进行测试,现在证实了该反应式的有效性。M态的动力学因此使得能够研究在L⇌M1反应中形成的瞬态平衡,该平衡代表了质子在席夫碱和天冬氨酸85之间的重新分布。从蛋白质结构来看,缬氨酸49被丙氨酸和甲硫氨酸取代预计都会导致席夫碱与天冬氨酸85的排列减少,实际上我们发现它们都使平衡向质子化席夫碱方向移动。相反,丙氨酸53被缬氨酸和甘氨酸取代预计会使席夫碱向相反方向移动,分别远离和更接近与天冬氨酸85对齐。前者确实使平衡向质子化席夫碱方向移动,后者向去质子化席夫碱方向移动。此外,L态中结合水的羟基伸缩带受到所有不利于质子向天冬氨酸85转移的突变的影响。我们得出结论,由结合水介导的席夫碱 - 天冬氨酸85对中质子供体和受体的几何结构是质子转移平衡的一个决定因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验