Rainville Stéphane J M, Kingdom Frederick A A
Center for Visual Science, University of Rochester, 274 Meliora Hall, Rochester, NY 14627, USA.
Vision Res. 2002 Feb;42(3):351-67. doi: 10.1016/s0042-6989(01)00290-5.
Scale invariance refers to aspects of visual perception that remain constant with changes in viewing distance. Previously, Dakin and Herbert [Proc. Roy. Soc. B. 265 (1397) (1998) 659] reported that the spatial integration region (IR) for mirror symmetry in bandpass noise is scale invariant because its dimensions scale with the inverse of peak spatial frequency. In bandpass noise, however, peak spatial frequency covaries with stimulus numerosity (i.e. the total number of information samples) and density (i.e. the total number of information samples per unit area). In this study, we report four experiments that decoupled properties of the retinal image affected by viewing distance--spatial frequency, numerosity, size, and density--and measured their effect on IR size. Stimuli consisted of bandpass microelements with vertically mirror-symmetric but otherwise random positions, and we measured observer resistance to random jitter imposed on microelement position. Results show that jitter resistance and IR size vary with the inverse of stimulus density but are unaffected by changes in stimulus spatial frequency, numerosity, or size. We found the IR has a 2:1 height-to-width aspect ratio and integrates information from approximately 18 microelements regardless of their spatial separation. Our results reveal that stimulus density plays a central role in the visual system's implementation of scale invariance. Using an ideal-observer, we demonstrate that scale invariance reflects genuine neural scale selection rather than a physical limitation on the stimulus' information content. Our findings that jitter resistance and IR size vary with the inverse of density challenge current models of spatial vision but can be reconciled with a model that compares the output of bandpass non-Fourier mechanisms to select spatial scales that match stimulus density.
尺度不变性是指视觉感知的某些方面在观察距离变化时保持不变。此前,达金和赫伯特[《皇家学会学报B》265(1397)(1998)659]报告称,带通噪声中镜像对称的空间整合区域(IR)是尺度不变的,因为其尺寸随峰值空间频率的倒数而缩放。然而,在带通噪声中,峰值空间频率与刺激数量(即信息样本的总数)和密度(即每单位面积信息样本的总数)共同变化。在本研究中,我们报告了四个实验,这些实验解耦了受观察距离影响的视网膜图像的属性——空间频率、数量、大小和密度——并测量了它们对IR大小的影响。刺激由具有垂直镜像对称但其他位置随机的带通微元素组成,我们测量了观察者对微元素位置施加的随机抖动的抵抗力。结果表明,抗抖动能力和IR大小随刺激密度的倒数而变化,但不受刺激空间频率、数量或大小变化的影响。我们发现IR的高宽比为2:1,并且无论微元素的空间间隔如何,都能整合来自大约18个微元素的信息。我们的结果表明,刺激密度在视觉系统尺度不变性的实现中起着核心作用。通过使用理想观察者,我们证明尺度不变性反映了真正的神经尺度选择,而不是对刺激信息内容的物理限制。我们关于抗抖动能力和IR大小随密度倒数变化的发现挑战了当前的空间视觉模型,但可以与一个将带通非傅里叶机制的输出进行比较以选择与刺激密度匹配的空间尺度的模型相协调。