Diaz Robert L, Alcid Alston D, Berger James M, Keeney Scott
Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Mol Cell Biol. 2002 Feb;22(4):1106-15. doi: 10.1128/MCB.22.4.1106-1115.2002.
Saccharomyces cerevisiae Spo11 protein (Spo11p) is thought to generate the DNA double-strand breaks (DSBs) that initiate homologous recombination during meiosis. Spo11p is related to a subunit of archaebacterial topoisomerase VI and appears to cleave DNA through a topoisomerase-like transesterase mechanism. In this work, we used the crystal structure of a fragment of topoisomerase VI to model the Spo11p structure and to identify amino acid residues in yeast Spo11p potentially involved in DSB catalysis and/or DNA binding. These residues were mutated to determine which are critical for Spo11p function in vivo. Mutation of Glu-233 or Asp-288, which lie in a conserved structural motif called the Toprim domain, abolished meiotic recombination. These Toprim domain residues have been implicated in binding a metal ion cofactor in topoisomerases and bacterial primases, supporting the idea that DNA cleavage by Spo11p is Mg(2+) dependent. Mutations at an invariant arginine (Arg-131) within a second conserved structural motif known as the 5Y-CAP domain, as well as three other mutations (E235A, F260R, and D290A), caused marked changes in the DSB pattern at a recombination hotspot, suggesting that Spo11p contributes directly to the choice of DNA cleavage site. Finally, certain DSB-defective mutant alleles generated in this study conferred a semidominant negative phenotype but only when Spo11p activity was partially compromised by the presence of an epitope tag. These results are consistent with a multimeric structure for Spo11p in vivo but may also indicate that the amount of Spo11 protein is not a limiting factor for DSB formation in normal cells.
酿酒酵母Spo11蛋白(Spo11p)被认为能产生DNA双链断裂(DSB),从而在减数分裂过程中启动同源重组。Spo11p与古细菌拓扑异构酶VI的一个亚基相关,并且似乎通过类似拓扑异构酶的转酯酶机制切割DNA。在这项研究中,我们利用拓扑异构酶VI片段的晶体结构来模拟Spo11p的结构,并确定酵母Spo11p中可能参与DSB催化和/或DNA结合的氨基酸残基。对这些残基进行突变以确定哪些对Spo11p在体内的功能至关重要。位于一个名为Toprim结构域的保守结构基序中的Glu-233或Asp-288发生突变,会消除减数分裂重组。这些Toprim结构域残基与拓扑异构酶和细菌引发酶中金属离子辅因子的结合有关,这支持了Spo11p切割DNA依赖Mg(2+)的观点。在另一个被称为5Y-CAP结构域的保守结构基序中的一个不变精氨酸(Arg-131)处发生突变,以及其他三个突变(E235A、F260R和D290A),在一个重组热点处导致DSB模式发生显著变化,这表明Spo11p直接参与DNA切割位点的选择。最后,本研究中产生的某些DSB缺陷突变等位基因赋予了半显性负表型,但仅当Spo11p活性因表位标签的存在而部分受损时才会如此。这些结果与Spo11p在体内的多聚体结构一致,但也可能表明Spo11蛋白的量不是正常细胞中DSB形成的限制因素。