Zhu Hao, Jackson Tim, Bunn H Franklin
Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Nephrol Dial Transplant. 2002;17 Suppl 1(Suppl 1):3-7. doi: 10.1093/ndt/17.suppl_1.3.
Adaptation to hypoxia is a topic of considerable clinical relevance, as it influences the pathophysiology of anaemia, polycythaemia, tissue ischaemia and cancer. A growing number of physiologically relevant genes are regulated in response to changes in intracellular oxygen tension. These include genes encoding erythropoietin, vascular endothelial growth factor and tyrosine hydroxylase. Studies on the regulation of the erythropoietin gene have provided insights into the common mechanism of oxygen sensing and signal transduction, leading to activation of the hypoxia-inducible transcription factor 1 (HIF-1). Activation of HIF-1 by hypoxia depends on rescue of its alpha-subunit from oxygen-dependent degradation in the proteasome, allowing it to form a heterodimer with HIF-1 beta. This then translocates to the nucleus. There, HIF-1 assembles with a highly conserved orphan nuclear receptor, HNF-4, and a critical transcriptional adaptor, p300. This complex binds to a 3' enhancer on the erythropoietin gene, enabling transcription of erythropoietin. HIF-1 also activates other genes, the cis-acting elements of which contain cognate hypoxia response elements. There is growing evidence that the oxygen sensor is a flavohaem protein and that the signal transduction pathway involves changes in the level of intracellular reactive oxygen intermediates. We have recently cloned a novel fusion protein called cytochrome b5/b5 reductase, which is a cyanide-insensitive NADPH oxidase and, therefore, a candidate to be the oxygen sensor. This flavohaem protein is widely expressed in cell lines and tissues, with localization in the perinuclear space. In the presence of oxygen and iron, it may induce oxidative modifications that target HIF-1 alpha for ubiquitination and degradation.
适应缺氧是一个具有重要临床意义的课题,因为它影响贫血、红细胞增多症、组织缺血和癌症的病理生理学。越来越多与生理相关的基因会根据细胞内氧张力的变化进行调节。这些基因包括编码促红细胞生成素、血管内皮生长因子和酪氨酸羟化酶的基因。对促红细胞生成素基因调控的研究为氧感应和信号转导的共同机制提供了见解,从而导致缺氧诱导转录因子1(HIF-1)的激活。缺氧对HIF-1的激活取决于其α亚基从蛋白酶体中氧依赖性降解中被拯救出来,使其能够与HIF-1β形成异二聚体。然后,这个异二聚体转移到细胞核。在那里,HIF-1与一个高度保守的孤儿核受体HNF-4以及一个关键的转录衔接子p300组装在一起。这个复合物与促红细胞生成素基因上的一个3'增强子结合,从而使促红细胞生成素得以转录。HIF-1还激活其他基因,这些基因的顺式作用元件含有同源缺氧反应元件。越来越多的证据表明,氧传感器是一种黄素血红蛋白,并且信号转导途径涉及细胞内活性氧中间体水平的变化。我们最近克隆了一种名为细胞色素b5/ b5还原酶的新型融合蛋白,它是一种对氰化物不敏感的NADPH氧化酶,因此是氧传感器的一个候选者。这种黄素血红蛋白在细胞系和组织中广泛表达,定位于核周空间。在有氧和铁存在的情况下,它可能诱导氧化修饰,使HIF-1α靶向泛素化和降解。