Wang Zhi-Qiang, Wei Chin-Chuan, Stuehr Dennis J
Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA.
J Biol Chem. 2002 Apr 12;277(15):12830-7. doi: 10.1074/jbc.M111967200. Epub 2002 Jan 31.
In the oxygenase domain of mouse inducible nitric-oxide synthase (iNOSoxy), a conserved tryptophan residue, Trp-457, regulates the kinetics and extent of l-Arg oxidation to N(omega)-hydroxy-l-arginine (NOHA) by controlling electron transfer between bound (6R)-tetrahydrobiopterin (H(4)B) cofactor and the enzyme heme Fe(II)O(2) intermediate (Wang, Z. Q., Wei, C. C., Ghosh, S., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) Biochemistry 40, 12819-12825). To investigate whether NOHA oxidation to citrulline and nitric oxide (NO) is regulated by a similar mechanism, we performed single turnover reactions with wild type iNOSoxy and mutants W457F and W457A. Ferrous proteins containing NOHA plus H(4)B or NOHA plus 7,8-dihydrobiopterin (H(2)B), were mixed with O(2)-containing buffer, and then heme spectral transitions and product formation were followed versus time. All three proteins formed a Fe(II)O(2) intermediate with identical spectral characteristics. In wild type, H(4)B increased the disappearance rate of the Fe(II)O(2) intermediate relative to H(2)B, and its disappearance was coupled to the formation of a Fe(III)NO immediate product prior to formation of ferric enzyme. In W457F and W457A, the disappearance rate of the Fe(II)O(2) intermediate was slower than in wild type and took place without detectable build-up of the heme Fe(III)NO immediate product. Rates of Fe(II)O(2) disappearance correlated with rates of citrulline formation in all three proteins, and reactions containing H(4)B formed 1.0, 0.54, and 0.38 citrulline/heme in wild type, W457F, and W457A iNOSoxy, respectively. Thus, Trp-457 modulates the kinetics of NOHA oxidation by iNOSoxy, and this is important for determining the extent of citrulline and NO formation. Our findings support a redox role for H(4)B during NOHA oxidation to NO by iNOSoxy.
在小鼠诱导型一氧化氮合酶的加氧酶结构域(iNOSoxy)中,一个保守的色氨酸残基Trp-457,通过控制结合的(6R)-四氢生物蝶呤(H4B)辅因子与酶血红素Fe(II)O2中间体之间的电子转移,调节L-精氨酸氧化为N(ω)-羟基-L-精氨酸(NOHA)的动力学和程度(Wang, Z. Q., Wei, C. C., Ghosh, S., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) Biochemistry 40, 12819 - 12825)。为了研究NOHA氧化为瓜氨酸和一氧化氮(NO)是否受类似机制调控,我们用野生型iNOSoxy以及突变体W457F和W457A进行了单周转反应。将含有NOHA加H4B或NOHA加7,8-二氢生物蝶呤(H2B)的亚铁蛋白与含O2的缓冲液混合,然后随时间监测血红素光谱转变和产物形成。所有三种蛋白都形成了具有相同光谱特征的Fe(II)O2中间体。在野生型中,相对于H2B,H4B提高了Fe(II)O2中间体的消失速率,并且其消失与在高铁酶形成之前血红素Fe(III)NO直接产物的形成相关联。在W457F和W457A中,Fe(II)O2中间体的消失速率比野生型慢,并且在没有可检测到的血红素Fe(III)NO直接产物积累的情况下发生。在所有三种蛋白中,Fe(II)O2的消失速率与瓜氨酸形成速率相关,并且含有H4B的反应在野生型、W457F和W457A的iNOSoxy中分别形成1.0、0.54和0.38个瓜氨酸/血红素。因此,Trp-457调节iNOSoxy对NOHA氧化的动力学,这对于确定瓜氨酸和NO的形成程度很重要。我们的发现支持H4B在iNOSoxy将NOHA氧化为NO过程中的氧化还原作用。