Suppr超能文献

血红素硫醇在塑造细菌一氧化氮合酶的催化特性中的影响。

Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase.

机构信息

Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.

出版信息

J Biol Chem. 2011 Nov 11;286(45):39224-35. doi: 10.1074/jbc.M111.286351. Epub 2011 Sep 14.

Abstract

Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg → NOHA or NOHA → citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.

摘要

一氧化氮合酶(NOS)是一种血红素硫醇酶,它从 L-精氨酸生成一氧化氮(NO)。哺乳动物和细菌 NOS 都含有一个保守的色氨酸(Trp),它与血红素硫醇配体形成氢键。我们在枯草芽孢杆菌 NOS 中突变色氨酸(Trp)66 为组氨酸(His)和苯丙氨酸(Phe)(W66H,W66F),以研究血红素硫醇电子性质如何控制酶催化。突变对血红素中点电势(W66H、野生型(WT)和 W66F 分别为-302、-361 和-427 mV)产生相反的影响。这些变化与 Arg 羟化和 N-羟基精氨酸(NOHA)氧化单轮反应中氧活化和产物形成的速率(W66H < WT < W66F)的顺序变化以及亚铁血红素-NO 产物络合物的 O2 反应性相关。然而,酶亚铁血红素-O2 自氧化显示出相反的顺序。四氢叶酸支持 WT 和突变体 NOS 的 NO 合成。在单轮研究中,所有三种蛋白质在产物形成(L-Arg→NOHA 或 NOHA→瓜氨酸)方面都表现出相似的程度,但当反应由黄素蛋白和 NADPH 支持时,W66F 突变体的活性降低了 2.5 倍。我们得出结论,色氨酸(Trp)66 通过调节血红素硫醇键的电子密度来控制几个催化参数。更高的电子密度(如在 W66F 中)可以改善氧的活化和对底物的反应性,但降低血红素二氧基的稳定性并降低血红素还原的驱动力。在 WT 酶中,色氨酸(Trp)66 残基平衡了这些相反的影响,以实现最佳催化。

相似文献

1
Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase.
J Biol Chem. 2011 Nov 11;286(45):39224-35. doi: 10.1074/jbc.M111.286351. Epub 2011 Sep 14.
4
Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase.
J Biol Chem. 2008 Nov 28;283(48):33498-507. doi: 10.1074/jbc.M806122200. Epub 2008 Sep 24.
10
Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis.
J Biol Chem. 2002 May 3;277(18):16167-71. doi: 10.1074/jbc.M201136200. Epub 2002 Feb 20.

引用本文的文献

1
Alternative modes of O activation in P450 and NOS enzymes are clarified by DFT modeling and resonance Raman spectroscopy.
J Inorg Biochem. 2020 Jun;207:111054. doi: 10.1016/j.jinorgbio.2020.111054. Epub 2020 Mar 13.
2
Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases.
J Biol Chem. 2019 May 10;294(19):7904-7916. doi: 10.1074/jbc.RA119.007810. Epub 2019 Mar 29.
3
Oxygen activation in NO synthases: evidence for a direct role of the substrate.
FEBS Open Bio. 2016 Mar 18;6(5):386-97. doi: 10.1002/2211-5463.12036. eCollection 2016 May.
4
Kinetics of Nitrite Reduction and Peroxynitrite Formation by Ferrous Heme in Human Cystathionine β-Synthase.
J Biol Chem. 2016 Apr 8;291(15):8004-13. doi: 10.1074/jbc.M116.718734. Epub 2016 Feb 11.
5
Nitric Oxide Synthase as a Target for Methicillin-Resistant Staphylococcus aureus.
Chem Biol. 2015 Jun 18;22(6):785-92. doi: 10.1016/j.chembiol.2015.05.013.
6
Dissecting structural and electronic effects in inducible nitric oxide synthase.
Biochem J. 2015 Apr 1;467(1):153-65. doi: 10.1042/BJ20141319.
7
A simple method for the determination of reduction potentials in heme proteins.
FEBS Lett. 2014 Mar 3;588(5):701-4. doi: 10.1016/j.febslet.2013.12.030. Epub 2014 Jan 17.
8
Redox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):E306-15. doi: 10.1073/pnas.1317173111. Epub 2014 Jan 7.
9
Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.
Biochemistry. 2012 Oct 30;51(43):8514-29. doi: 10.1021/bi300863a. Epub 2012 Oct 15.
10
Effect of the disease-causing R266K mutation on the heme and PLP environments of human cystathionine β-synthase.
Biochemistry. 2012 Aug 14;51(32):6360-70. doi: 10.1021/bi300421z. Epub 2012 Jul 31.

本文引用的文献

1
The proximal hydrogen bond network modulates Bacillus subtilis nitric-oxide synthase electronic and structural properties.
J Biol Chem. 2011 Apr 8;286(14):11997-2005. doi: 10.1074/jbc.M110.195446. Epub 2011 Feb 10.
2
Cloning, Expression, and Purification of a Nitric Oxide Synthase-Like Protein from Bacillus cereus.
Biochem Res Int. 2010;2010:489892. doi: 10.1155/2010/489892. Epub 2009 Nov 30.
4
NO synthase isoforms specifically modify peroxynitrite reactivity.
FEBS J. 2010 Oct;277(19):3963-73. doi: 10.1111/j.1742-4658.2010.07786.x. Epub 2010 Sep 2.
5
Bacterial nitric oxide synthases.
Annu Rev Biochem. 2010;79:445-70. doi: 10.1146/annurev-biochem-062608-103436.
6
Magnetic circular dichroism spectroscopic characterization of the NOS-like protein from Geobacillus stearothermophilus (gsNOS).
J Inorg Biochem. 2010 Mar;104(3):357-64. doi: 10.1016/j.jinorgbio.2009.12.014. Epub 2010 Jan 4.
7
NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16221-6. doi: 10.1073/pnas.0908443106. Epub 2009 Sep 10.
9
Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics.
Science. 2009 Sep 11;325(5946):1380-4. doi: 10.1126/science.1175439.
10
Trp180 of endothelial NOS and Trp56 of bacterial saNOS modulate sigma bonding of the axial cysteine to the heme.
J Inorg Biochem. 2009 Jul;103(7):1102-12. doi: 10.1016/j.jinorgbio.2009.05.011. Epub 2009 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验