Morioka C A, Valentino D J, Duckwiler G, El-Saden S, Sinha U, Bui A, Kangarloo H
Department of Radiological Sciences, University of California, Los Angeles, CA, USA.
Proc AMIA Symp. 2001:468-72.
Clinical data sets for neuroradiological cases can be quite large. A typical brain tumor patient at UCLA will undergo 8-10 separate studies over a 2 year period, each study will produce 60-100 magnetic resonance (MR) images. Gathering and sorting through a patient s imaging events during the course of treatment can be both overwhelming and time consuming. The purpose of this research is to develop an intelligent pre-fetch and hanging protocol that automatically gathers the relevant prior examinations from a picture archiving, and communication systems (PACS) archive and sends the pertinent historical images to the diagnostic display station where the new examination is subsequently read out. The intelligent hanging protocol describes the type of layout and sequence for image display. We have developed a classification scheme to organize the pertinent patient information to selectively pre-fetch and intelligently present the images to review brain tumor cases for a diagnostic neuroradiology workstation.
神经放射学病例的临床数据集可能相当大。加州大学洛杉矶分校的典型脑肿瘤患者在两年时间内将接受8至10项单独的检查,每项检查会产生60至100张磁共振(MR)图像。在治疗过程中收集并整理患者的影像资料既让人应接不暇又耗时费力。本研究的目的是开发一种智能预取和挂片协议,该协议能自动从图像存档与通信系统(PACS)存档中收集相关的先前检查资料,并将相关的历史图像发送到诊断显示站,随后在该站读出新的检查结果。智能挂片协议描述了图像显示的布局类型和顺序。我们已经开发了一种分类方案,用于整理相关的患者信息,以便有选择地预取并智能呈现图像,供诊断神经放射学工作站复查脑肿瘤病例。