Sachse Silke, Galizia C Giovanni
Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise Strasse 28-30, D-14195 Berlin, Germany.
J Neurophysiol. 2002 Feb;87(2):1106-17. doi: 10.1152/jn.00325.2001.
The primary olfactory brain center, the antennal lobe (AL) in insects or the olfactory bulb in vertebrates, is a notable example of a neural network for sensory processing. While physiological properties of the input, the olfactory receptor neurons, have become clearer, the operation of the network itself remains cryptic. Therefore we measured spatio-temporal odor-response patterns in the output neurons of the olfactory glomeruli using optical imaging in the honeybee Apis mellifera. We mapped these responses to identified glomeruli, which are the structural and functional units of the AL. Each odor evoked a complex spatio-temporal activity pattern of excited and inhibited glomeruli. These properties were odor- and glomerulus-specific and were conserved across individuals. We compared the spatial pattern of excited glomeruli to previously published signals, which derived mainly from the receptor neurons, and found that they appeared more confined, showing that inhibitory connections enhance the contrast between glomeruli in the AL. To investigate the underlying mechanisms, we applied GABA and the GABA-receptor antagonist picrotoxin (PTX). The results show the presence of two separate inhibitory networks: one is GABAergic and modulates overall AL activity, the other is PTX-insensitive and glomerulus-specific. Inhibitory connections of the latter network selectively inhibit glomeruli with overlapping response profiles, in a way akin to "lateral" inhibition in other sensory systems. Selectively inhibited glomeruli need not be spatial neighbors. The net result is a globally modulated, contrast-enhanced and predictable representation of odors in the olfactory output neurons.
主要嗅觉脑中枢,昆虫的触角叶(AL)或脊椎动物的嗅球,是用于感官处理的神经网络的一个显著例子。虽然输入神经元即嗅觉受体神经元的生理特性已变得更加清晰,但网络本身的运作仍不为人知。因此,我们利用光学成像技术在蜜蜂(Apis mellifera)中测量了嗅觉小球输出神经元中的时空气味反应模式。我们将这些反应映射到已识别的小球,这些小球是触角叶的结构和功能单位。每种气味都会诱发兴奋和抑制小球的复杂时空活动模式。这些特性具有气味和小球特异性,并且在个体间保持一致。我们将兴奋小球的空间模式与之前发表的主要源自受体神经元的信号进行比较,发现它们看起来更局限,这表明抑制性连接增强了触角叶中小球之间的对比度。为了研究潜在机制,我们应用了γ-氨基丁酸(GABA)和GABA受体拮抗剂印防己毒素(PTX)。结果显示存在两个独立的抑制网络:一个是GABA能的,调节触角叶的整体活动,另一个对PTX不敏感且具有小球特异性。后一个网络的抑制性连接以类似于其他感官系统中“侧向”抑制的方式选择性抑制具有重叠反应谱的小球。被选择性抑制的小球不一定是空间上的相邻小球。最终结果是在嗅觉输出神经元中对气味进行全局调节、对比度增强且可预测的表征。