Suppr超能文献

γ-氨基丁酸能抑制在塑造果蝇触角叶中气味诱发的时空模式中的作用。

Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.

作者信息

Wilson Rachel I, Laurent Gilles

机构信息

Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Neurosci. 2005 Oct 5;25(40):9069-79. doi: 10.1523/JNEUROSCI.2070-05.2005.

Abstract

Drosophila olfactory receptor neurons project to the antennal lobe, the insect analog of the mammalian olfactory bulb. GABAergic synaptic inhibition is thought to play a critical role in olfactory processing in the antennal lobe and olfactory bulb. However, the properties of GABAergic neurons and the cellular effects of GABA have not been described in Drosophila, an important model organism for olfaction research. We have used whole-cell patch-clamp recording, pharmacology, immunohistochemistry, and genetic markers to investigate how GABAergic inhibition affects olfactory processing in the Drosophila antennal lobe. We show that many axonless local neurons (LNs) in the adult antennal lobe are GABAergic. GABA hyperpolarizes antennal lobe projection neurons (PNs) via two distinct conductances, blocked by a GABAA- and GABAB-type antagonist, respectively. Whereas GABAA receptors shape PN odor responses during the early phase of odor responses, GABAB receptors mediate odor-evoked inhibition on longer time scales. The patterns of odor-evoked GABAB-mediated inhibition differ across glomeruli and across odors. Finally, we show that LNs display broad but diverse morphologies and odor preferences, suggesting a cellular basis for odor- and glomerulus-dependent patterns of inhibition. Together, these results are consistent with a model in which odors elicit stimulus-specific spatial patterns of GABA release, and as a result, GABAergic inhibition increases the degree of difference between the neural representations of different odors.

摘要

果蝇嗅觉受体神经元投射至触角叶,这是昆虫中与哺乳动物嗅球相对应的结构。γ-氨基丁酸(GABA)能突触抑制被认为在触角叶和嗅球的嗅觉处理过程中起着关键作用。然而,在果蝇(嗅觉研究的重要模式生物)中,GABA能神经元的特性以及GABA的细胞效应尚未得到描述。我们使用全细胞膜片钳记录、药理学、免疫组织化学和遗传标记来研究GABA能抑制如何影响果蝇触角叶中的嗅觉处理。我们发现,成年果蝇触角叶中的许多无轴突局部神经元(LN)是GABA能的。GABA通过两种不同的电导使触角叶投射神经元(PN)超极化,这两种电导分别被GABAA型和GABAB型拮抗剂阻断。在气味反应的早期阶段,GABAA受体塑造PN的气味反应,而GABAB受体在更长的时间尺度上介导气味诱发的抑制。气味诱发的GABAB介导的抑制模式在不同的小球和不同的气味之间存在差异。最后,我们表明LN呈现出广泛但多样的形态和气味偏好,这表明了气味和小球依赖性抑制模式的细胞基础。总之,这些结果与一种模型一致,即气味引发GABA释放的刺激特异性空间模式,因此,GABA能抑制增加了不同气味的神经表征之间的差异程度。

相似文献

1
Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
J Neurosci. 2005 Oct 5;25(40):9069-79. doi: 10.1523/JNEUROSCI.2070-05.2005.
2
A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in .
Front Neural Circuits. 2017 May 3;11:30. doi: 10.3389/fncir.2017.00030. eCollection 2017.
3
Electrical coupling between olfactory glomeruli.
Neuron. 2010 Sep 23;67(6):1034-47. doi: 10.1016/j.neuron.2010.08.041.
4
Olfactory information processing in the Drosophila antennal lobe: anything goes?
J Neurosci. 2008 Dec 3;28(49):13075-87. doi: 10.1523/JNEUROSCI.2973-08.2008.
5
Transformation of olfactory representations in the Drosophila antennal lobe.
Science. 2004 Jan 16;303(5656):366-70. doi: 10.1126/science.1090782. Epub 2003 Dec 18.
6
Odor-evoked neural oscillations in Drosophila are mediated by widely branching interneurons.
J Neurosci. 2009 Jul 1;29(26):8595-603. doi: 10.1523/JNEUROSCI.1455-09.2009.
8
Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10294-9. doi: 10.1073/pnas.1220560110. Epub 2013 May 31.

引用本文的文献

1
Connectivity of serotonin neurons reveals a constrained inhibitory subnetwork within the olfactory system.
bioRxiv. 2025 Aug 22:2025.08.19.671125. doi: 10.1101/2025.08.19.671125.
2
Serotonin selectively modulates visual responses of object motion detectors in .
bioRxiv. 2025 Aug 13:2025.03.21.644681. doi: 10.1101/2025.03.21.644681.
3
Recurrent connectivity supports carbon dioxide sensitivity in mosquitoes.
bioRxiv. 2025 Jul 30:2025.07.29.667487. doi: 10.1101/2025.07.29.667487.
4
Eye structure shapes neuron function in Drosophila motion vision.
Nature. 2025 Jul 23. doi: 10.1038/s41586-025-09276-5.
5
Reductionist modeling of calcium-dependent dynamics in recurrent neural networks.
Front Comput Neurosci. 2025 Jun 13;19:1565552. doi: 10.3389/fncom.2025.1565552. eCollection 2025.
6
The innexin 7 gap junction protein contributes to synchronized activity in the antennal lobe and regulates olfactory function.
Front Neural Circuits. 2025 Apr 25;19:1563401. doi: 10.3389/fncir.2025.1563401. eCollection 2025.
7
A neural correlate of individual odor preference in .
Elife. 2025 Mar 11;12:RP90511. doi: 10.7554/eLife.90511.
8
Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations.
J Neurosci. 2025 Mar 5;45(10):e1872242024. doi: 10.1523/JNEUROSCI.1872-24.2024.
9
Glia control experience-dependent plasticity in an olfactory critical period.
Elife. 2025 Jan 30;13:RP100989. doi: 10.7554/eLife.100989.

本文引用的文献

1
Encoding of olfactory information with oscillating neural assemblies.
Science. 1994 Sep 23;265(5180):1872-5. doi: 10.1126/science.265.5180.1872.
2
Olfactory reactions in the brain of the hedgehog.
J Physiol. 1942 Mar 31;100(4):459-73. doi: 10.1113/jphysiol.1942.sp003955.
4
Coexpression of two functional odor receptors in one neuron.
Neuron. 2005 Mar 3;45(5):661-6. doi: 10.1016/j.neuron.2005.01.025.
6
Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators.
J Neurosci. 2004 Oct 27;24(43):9572-9. doi: 10.1523/JNEUROSCI.2854-04.2004.
7
The odor coding system of Drosophila.
Trends Genet. 2004 Sep;20(9):453-9. doi: 10.1016/j.tig.2004.06.015.
8
The molecular basis of odor coding in the Drosophila antenna.
Cell. 2004 Jun 25;117(7):965-79. doi: 10.1016/j.cell.2004.05.012.
9
Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish.
J Neurophysiol. 2004 Jun;91(6):2658-69. doi: 10.1152/jn.01143.2003. Epub 2004 Feb 11.
10
Transformation of olfactory representations in the Drosophila antennal lobe.
Science. 2004 Jan 16;303(5656):366-70. doi: 10.1126/science.1090782. Epub 2003 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验