Suppr超能文献

果蝇触角叶中气味混合物的处理揭示了全局抑制和特定神经小球相互作用。

Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions.

作者信息

Silbering Ana F, Galizia C Giovanni

机构信息

Institute of Neurobiology, Free University of Berlin, 14195 Berlin, Germany.

出版信息

J Neurosci. 2007 Oct 31;27(44):11966-77. doi: 10.1523/JNEUROSCI.3099-07.2007.

Abstract

To understand how odor information is represented and processed in the antennal lobe (AL) of Drosophila melanogaster, we have optically recorded glomerular calcium responses to single odors and odor mixtures from olfactory sensory neurons (OSNs) and projection neurons (PNs). Odor mixtures offer a good tool to analyze odor processing because experimental results can be tested against clear predictions. At the level of the OSNs, the representation of odor mixtures could be predicted from the response patterns of the components in most cases. PN responses to mixtures, however, provide evidences of interglomerular inhibition. Application of picrotoxin (PTX), an antagonist of GABA(A)-like receptors, enhanced odor responses, modified their temporal course, and eliminated mixture suppression at the PN level. Our results can be best explained by postulating the existence of at least two local networks in the fly AL: a glomerulus specific network, which includes excitatory and inhibitory connections and a PTX sensitive inhibitory global network that acts on all glomeruli with proportional strength to the global AL input.

摘要

为了了解黑腹果蝇触角叶(AL)中气味信息是如何被表征和处理的,我们通过光学记录了嗅觉感觉神经元(OSN)和投射神经元(PN)对单一气味和气味混合物的肾小球钙反应。气味混合物为分析气味处理提供了一个很好的工具,因为实验结果可以根据明确的预测进行检验。在OSN水平上,在大多数情况下,可以根据各成分的反应模式预测气味混合物的表征。然而,PN对混合物的反应提供了肾小球间抑制的证据。应用苦味毒素(PTX),一种γ-氨基丁酸A型(GABA(A))样受体拮抗剂,增强了气味反应,改变了它们的时间进程,并消除了PN水平上的混合物抑制。我们的结果可以通过假设果蝇AL中至少存在两个局部网络来最好地解释:一个肾小球特异性网络,它包括兴奋性和抑制性连接;以及一个PTX敏感的抑制性全局网络,它以与全局AL输入成比例的强度作用于所有肾小球。

相似文献

4
Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
J Neurosci. 2005 Oct 5;25(40):9069-79. doi: 10.1523/JNEUROSCI.2070-05.2005.
5
Transformation of olfactory representations in the Drosophila antennal lobe.
Science. 2004 Jan 16;303(5656):366-70. doi: 10.1126/science.1090782. Epub 2003 Dec 18.
6
Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe.
Neuron. 2007 Apr 5;54(1):89-103. doi: 10.1016/j.neuron.2007.03.010.
8
Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
J Neurosci. 2020 Jul 29;40(31):5954-5969. doi: 10.1523/JNEUROSCI.0233-20.2020. Epub 2020 Jun 19.
9
Neural encoding of rapidly fluctuating odors.
Neuron. 2009 Feb 26;61(4):570-86. doi: 10.1016/j.neuron.2009.01.021.
10
Antennal lobe processing correlates to moth olfactory behavior.
J Neurosci. 2012 Apr 25;32(17):5772-82. doi: 10.1523/JNEUROSCI.6225-11.2012.

引用本文的文献

1
Connectivity of serotonin neurons reveals a constrained inhibitory subnetwork within the olfactory system.
bioRxiv. 2025 Aug 22:2025.08.19.671125. doi: 10.1101/2025.08.19.671125.
2
Adaptation invariant concentration discrimination in an insect olfactory system.
Elife. 2025 Aug 26;12:RP89330. doi: 10.7554/eLife.89330.
3
In Vivo Two-Photon Imaging of the Olfactory System in Insects.
Methods Mol Biol. 2025;2915:1-48. doi: 10.1007/978-1-0716-4466-9_1.
4
Differential Coding of Fruit, Leaf, and Microbial Odours in the Brains of and .
Insects. 2025 Jan 15;16(1):84. doi: 10.3390/insects16010084.
5
Peripheral preprocessing in facilitates odor classification.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2316799121. doi: 10.1073/pnas.2316799121. Epub 2024 May 16.
6
Gain modulation and odor concentration invariance in early olfactory networks.
PLoS Comput Biol. 2023 Jun 21;19(6):e1011176. doi: 10.1371/journal.pcbi.1011176. eCollection 2023 Jun.
7
Anatomic and neurochemical analysis of the palpal olfactory system in the red flour beetle , HERBST.
Front Cell Neurosci. 2023 Feb 23;17:1097462. doi: 10.3389/fncel.2023.1097462. eCollection 2023.
8
Geosmin suppresses defensive behaviour and elicits unusual neural responses in honey bees.
Sci Rep. 2023 Mar 8;13(1):3851. doi: 10.1038/s41598-023-30796-5.
9
Parallel encoding of CO in attractive and aversive glomeruli by selective lateral signaling between olfactory afferents.
Curr Biol. 2022 Oct 10;32(19):4225-4239.e7. doi: 10.1016/j.cub.2022.08.025. Epub 2022 Sep 6.
10
Hyperbolic odorant mixtures as a basis for more efficient signaling between flowering plants and bees.
PLoS One. 2022 Jul 13;17(7):e0270358. doi: 10.1371/journal.pone.0270358. eCollection 2022.

本文引用的文献

1
Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe.
Neuron. 2007 Apr 5;54(1):89-103. doi: 10.1016/j.neuron.2007.03.010.
2
Component information is preserved in glomerular responses to binary odor mixtures in the moth Spodoptera littoralis.
Chem Senses. 2007 Jun;32(5):433-43. doi: 10.1093/chemse/bjm009. Epub 2007 Mar 30.
4
Synaptic integration of olfactory information in mouse anterior olfactory nucleus.
J Neurosci. 2006 Nov 15;26(46):12023-32. doi: 10.1523/JNEUROSCI.2598-06.2006.
6
Neural representation of olfactory mixtures in the honeybee antennal lobe.
Eur J Neurosci. 2006 Aug;24(4):1161-74. doi: 10.1111/j.1460-9568.2006.04959.x.
7
Combinatorial effects of odorant mixes in olfactory cortex.
Science. 2006 Mar 10;311(5766):1477-81. doi: 10.1126/science.1124755.
9
Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
J Neurosci. 2005 Oct 5;25(40):9069-79. doi: 10.1523/JNEUROSCI.2070-05.2005.
10
Genetic and functional subdivision of the Drosophila antennal lobe.
Curr Biol. 2005 Sep 6;15(17):1548-53. doi: 10.1016/j.cub.2005.07.066.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验