Suppr超能文献

草原土壤有机碳的空间变异性:对不同尺度变化检测的启示

Spatial variability of soil organic carbon in grasslands: implications for detecting change at different scales.

作者信息

Conant R T, Paustian K

机构信息

Natural Resource Ecology Laboratory, Colorado State University, Fort Collins 80523-1499, USA.

出版信息

Environ Pollut. 2002;116 Suppl 1:S127-35. doi: 10.1016/s0269-7491(01)00265-2.

Abstract

Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation.

摘要

用于量化广泛土壤碳变化(无因果关系信息)的大量数据,加上用于将变化归因于特定管理措施的密集数据,可构成高效国家草地土壤碳监测网络的基础。基于广泛(美国农业部/自然资源保护局土壤剖面数据库)和密集的田间尺度土壤碳数据的变异性,我们评估了未来样本采集检测草地土壤碳变化的功效。与草地管理变化相关的一系列空间尺度上的潜在土壤碳变化,在5年后分别在县、州或国家尺度上采集34、224、501个样本后可得到验证(α = 0.1)。农场尺度分析表明,对于各种生态系统,同等数量的土芯和不同组的土芯(微小区)会导致土壤碳变异系数最低。我们的结果表明,利用现有技术可在从农场到整个国家的尺度上精确量化草地土壤碳变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验