Detwiler P B, Fuortes M G
J Physiol. 1975 Sep;251(1):107-29. doi: 10.1113/jphysiol.1975.sp011083.
Responses to mechanical stimulation were recorded from hair cells in the statocyst of Hermissenda crassicornis. The response to a brief stimulus is a depolarizing wave which reaches peak in about 25 msec and decays slowly. 2. Hyperpolarization by extrinsic currents increases the amplitude of the response; depolarization decreases it and eventually reverses its polarity. It is inferred from these results that the primary outcome of the transduction process is an increase of membrane conductance and that the voltage change (generator potential) follows as a secondary event. 3. The features of the conductance change were reconstructed from the time course of the generator potential and the passive properties of the membrane. It was found that the increase of membrane conductance develops slowly and is roughly proportional to the energy delivered by the stimulus. 4. The time course of the conductance change required to reproduce the generator potential is similar to the output of a model involving a sequence of transformations. 5. The generator potential is sensitive to temperature, becoming faster as temperature is raised. This effect is reproduced by the model if the transition rates are assumed to be temperature-dependent, with a Q10 of about 2. 6. It is concluded that a chain of temperature-sensitive processes is interposed between the stimulus and the increase of membrane conductance.