Moreno Alonso P, Chanson Marc, Elenes Sergio, Anumonwo Justus, Scerri Isabelle, Gu Hong, Taffet Steven M, Delmar Mario
Krannert Institute of Cardiology, Indiana School of Medicine, Indianapolis 46202, USA.
Circ Res. 2002 Mar 8;90(4):450-7. doi: 10.1161/hh0402.105667.
Previous studies show that chemical regulation of connexin43 (Cx43) gap junction channels depends on the integrity of the carboxyl terminal (CT) domain. Experiments using Xenopus oocytes show that truncation of the CT domain alters the time course for current inactivation; however, correlation with the behavior of single Cx43 channels has been lacking. Furthermore, whereas chemical gating is associated with a "ball-and-chain" mechanism, there is no evidence whether transjunctional voltage regulation for Cx43 follows a similar model. We provide data on the properties of transjunctional currents from voltage-clamped pairs of mammalian tumor cells expressing either wild-type Cx43 or a mutant of Cx43 lacking the carboxyl terminal domain (Cx43M257). Cx43 transjunctional currents showed bi-exponential decay and a residual steady-state conductance of approximately 35% maximum. Transjunctional currents recorded from Cx43M257 channels displayed a single, slower exponential decay. Long transjunctional voltage pulses caused virtual disappearance of the residual current at steady state. Single channel data revealed disappearance of the residual state, increase in the mean open time, and slowing of the transition times between open and closed states. Coexpression of CxM257 with Cx43CT in a separate fragment restored the lower conductance state. We propose that Cx43CT is an effector of fast voltage gating. Truncation of Cx43CT limits channel transitions to those occurring across the higher energy barrier that separates open and closed states. We further propose that a ball-and-chain interaction provides the fast component of voltage-dependent gating between CT domain and a receptor affiliated with the pore.
先前的研究表明,连接蛋白43(Cx43)间隙连接通道的化学调节取决于羧基末端(CT)结构域的完整性。使用非洲爪蟾卵母细胞进行的实验表明,CT结构域的截断会改变电流失活的时间进程;然而,一直缺乏与单个Cx43通道行为的相关性研究。此外,虽然化学门控与“球-链”机制相关,但没有证据表明Cx43的跨连接电压调节是否遵循类似模型。我们提供了关于表达野生型Cx43或缺乏羧基末端结构域的Cx43突变体(Cx43M257)的电压钳制哺乳动物肿瘤细胞对之间跨连接电流特性的数据。Cx43跨连接电流表现出双指数衰减,残余稳态电导约为最大值的35%。从Cx43M257通道记录的跨连接电流显示出单一的、较慢的指数衰减。长时间的跨连接电压脉冲导致稳态时残余电流几乎消失。单通道数据显示残余状态消失、平均开放时间增加以及开放和关闭状态之间的转换时间减慢。CxM257与Cx43CT在单独片段中的共表达恢复了较低电导状态。我们提出Cx43CT是快速电压门控的效应器。Cx43CT的截断将通道转换限制在跨越分隔开放和关闭状态的较高能量屏障发生的转换。我们进一步提出,球-链相互作用提供了CT结构域与孔相关受体之间电压依赖性门控的快速成分。