Hu Zhenming, Boyd Russell J, Nakatsuji Hiroshi
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3.
J Am Chem Soc. 2002 Mar 20;124(11):2664-71. doi: 10.1021/ja0108178.
Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and Cl(2)Rh(CO)(2) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for Cl(2)Rh(CO)(2) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and Cl(2)Rh(CO)(2) are found to be quite different. For Cl(2)Rh(CO)(2), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.
采用B3LYP和对称适配簇(SAC)/SAC-组态相互作用(SAC-CI)理论方法,研究了CpM(CO)₂(Cp = η⁵-C₅H₅;M = Rh、Ir)和[Cl₂Rh(CO)₂]⁻配合物的分子结构和激发态。所有二羰基配合物都具有单重态基态电子,单重态-三重态分离较大。母体二羰基配合物中CO的热解离在能量上是不利的。CO热解离对[Cl₂Rh(CO)₂]⁻来说是一个活化过程,而对CpM(CO)₂来说是一个排斥势。发现CpM(CO)₂和[Cl₂Rh(CO)₂]⁻主要激发态的性质有很大不同。对于[Cl₂Rh(CO)₂]⁻,所有强跃迁都被确定为金属到配体CO的电荷转移(MLCT)激发。CpM(CO)₂激发态的一个显著特征是,MLCT激发和配体Cp到金属及CO的电荷转移激发在较高能量态中强烈混合,后者具有最大的振子强度。因此,从理论上确定了CpRh(CO)₂和CpIr(CO)₂存在竞争电荷转移激发态。Lees等人报道的CpM(CO)₂光反应量子效率的波长依赖性可以用两种不同类型激发态的存在来解释。CpM(CO)₂的C-H/S-H键活化量子效率较低的原因可归因于较高能量态中MLCT激发的比例较小。